Crossmodal Integration in the Primate Superior Colliculus Underlying the Preparation and Initiation of Saccadic Eye Movements

1 Centre for Neuroscience Studies, Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Queen’s University, Kingston, Ontario, Canada; 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2005-06, Vol.93 (6), p.3659-3673
Hauptverfasser: Bell, Andrew H, Meredith, M. Alex, Van Opstal, A. John, Munoz, Douglas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3673
container_issue 6
container_start_page 3659
container_title Journal of neurophysiology
container_volume 93
creator Bell, Andrew H
Meredith, M. Alex
Van Opstal, A. John
Munoz, Douglas P
description 1 Centre for Neuroscience Studies, Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Queen’s University, Kingston, Ontario, Canada; 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and 3 Institute for Neuroscience, Department of Biophysics, Radboud University Nijmegen, Nijmegen, The Netherlands Submitted 29 November 2004; accepted in final form 5 February 2005 Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimuli, we recorded activity from dSC neurons while monkeys generated saccades to visual or audiovisual stimuli. To evoke crossmodal interactions of varying strength, we used auditory and visual stimuli of different intensities, presented either in spatial alignment or to opposite hemifields. Spatially aligned audiovisual stimuli evoked the shortest SRTs. In the case of low-intensity stimuli, the response to the auditory component of the aligned audiovisual target increased the activity preceding the response to the visual component, accelerating the onset of the visual response and facilitating the generation of shorter-latency saccades. In the case of high-intensity stimuli, the auditory and visual responses occurred much closer together in time and so there was little opportunity for the auditory stimulus to influence previsual activity. Instead, the reduction in SRT for high-intensity, aligned audiovisual stimuli was correlated with increased premotor activity (activity after visual burst but preceding saccade-aligned burst). These data provide a link between changes in neural activity related to stimulus modality with changes in behavior. They further demonstrate how crossmodal interactions are not limited to the initial sensory activity but can also influence premotor activity in the SC. Address for reprint requests and other correspondence: D. Munoz, Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (E-mail: doug{at}eyeml.queensu.ca )
doi_str_mv 10.1152/jn.01214.2004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1152_jn_01214_2004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17352351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-5c69b358642e2a5e442e748632f73192d0fa22f5f6ba201105e6b46c3ad3d7663</originalsourceid><addsrcrecordid>eNp1kL1v1DAYhy0EokfbkRV5olMOf8TOZUSnllYqAqntbPniN3c-OXawE2gG_vc6XAQT0_uh5_cbHoTeU7KmVLBPR78mlNFyzQgpX6FV_rGCinrzGq0IyTsnVXWG3qV0JIRUgrC36IyKinDG2Ar93saQUheMdvjOD7CPerDBY-vxcAD8PdpOD4Afxh6iDRFvg3O2Gd2Y8JM3EN1k_X5BoddLWnuT2-xgT2do8YNuGm1sg68nwF_DT-jAD-kCvWm1S3C5zHP0dHP9uL0t7r99udt-vi8aQfhQiEbWOy42smTAtIAyz6rcSM7aitOaGdJqxlrRyp1mhFIiQO5K2XBtuKmk5Ofo46m3j-HHCGlQnU0NOKc9hDEpWnHBuKAZLE5gM2uJ0Kp-NhAnRYmafaujV398q9l35j8sxeOuA_OPXgRn4OoEHOz-8MtGUP1hSja4sJ_mrporqbgUdSb5_8mb0blHeB5y5G9C9ablLwGsnNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17352351</pqid></control><display><type>article</type><title>Crossmodal Integration in the Primate Superior Colliculus Underlying the Preparation and Initiation of Saccadic Eye Movements</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bell, Andrew H ; Meredith, M. Alex ; Van Opstal, A. John ; Munoz, Douglas P</creator><creatorcontrib>Bell, Andrew H ; Meredith, M. Alex ; Van Opstal, A. John ; Munoz, Douglas P</creatorcontrib><description>1 Centre for Neuroscience Studies, Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Queen’s University, Kingston, Ontario, Canada; 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and 3 Institute for Neuroscience, Department of Biophysics, Radboud University Nijmegen, Nijmegen, The Netherlands Submitted 29 November 2004; accepted in final form 5 February 2005 Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimuli, we recorded activity from dSC neurons while monkeys generated saccades to visual or audiovisual stimuli. To evoke crossmodal interactions of varying strength, we used auditory and visual stimuli of different intensities, presented either in spatial alignment or to opposite hemifields. Spatially aligned audiovisual stimuli evoked the shortest SRTs. In the case of low-intensity stimuli, the response to the auditory component of the aligned audiovisual target increased the activity preceding the response to the visual component, accelerating the onset of the visual response and facilitating the generation of shorter-latency saccades. In the case of high-intensity stimuli, the auditory and visual responses occurred much closer together in time and so there was little opportunity for the auditory stimulus to influence previsual activity. Instead, the reduction in SRT for high-intensity, aligned audiovisual stimuli was correlated with increased premotor activity (activity after visual burst but preceding saccade-aligned burst). These data provide a link between changes in neural activity related to stimulus modality with changes in behavior. They further demonstrate how crossmodal interactions are not limited to the initial sensory activity but can also influence premotor activity in the SC. Address for reprint requests and other correspondence: D. Munoz, Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (E-mail: doug{at}eyeml.queensu.ca )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.01214.2004</identifier><identifier>PMID: 15703222</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Acoustic Stimulation - methods ; Animals ; Auditory Pathways - physiology ; Brain Mapping ; Cell Count - methods ; Dose-Response Relationship, Radiation ; Macaca mulatta ; Male ; Models, Neurological ; Neurons - classification ; Neurons - physiology ; Photic Stimulation - methods ; Reaction Time - physiology ; Saccades - physiology ; Sensory Thresholds ; Statistics as Topic ; Superior Colliculi - cytology ; Time Factors ; Visual Pathways - physiology</subject><ispartof>Journal of neurophysiology, 2005-06, Vol.93 (6), p.3659-3673</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-5c69b358642e2a5e442e748632f73192d0fa22f5f6ba201105e6b46c3ad3d7663</citedby><cites>FETCH-LOGICAL-c503t-5c69b358642e2a5e442e748632f73192d0fa22f5f6ba201105e6b46c3ad3d7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15703222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bell, Andrew H</creatorcontrib><creatorcontrib>Meredith, M. Alex</creatorcontrib><creatorcontrib>Van Opstal, A. John</creatorcontrib><creatorcontrib>Munoz, Douglas P</creatorcontrib><title>Crossmodal Integration in the Primate Superior Colliculus Underlying the Preparation and Initiation of Saccadic Eye Movements</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Centre for Neuroscience Studies, Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Queen’s University, Kingston, Ontario, Canada; 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and 3 Institute for Neuroscience, Department of Biophysics, Radboud University Nijmegen, Nijmegen, The Netherlands Submitted 29 November 2004; accepted in final form 5 February 2005 Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimuli, we recorded activity from dSC neurons while monkeys generated saccades to visual or audiovisual stimuli. To evoke crossmodal interactions of varying strength, we used auditory and visual stimuli of different intensities, presented either in spatial alignment or to opposite hemifields. Spatially aligned audiovisual stimuli evoked the shortest SRTs. In the case of low-intensity stimuli, the response to the auditory component of the aligned audiovisual target increased the activity preceding the response to the visual component, accelerating the onset of the visual response and facilitating the generation of shorter-latency saccades. In the case of high-intensity stimuli, the auditory and visual responses occurred much closer together in time and so there was little opportunity for the auditory stimulus to influence previsual activity. Instead, the reduction in SRT for high-intensity, aligned audiovisual stimuli was correlated with increased premotor activity (activity after visual burst but preceding saccade-aligned burst). These data provide a link between changes in neural activity related to stimulus modality with changes in behavior. They further demonstrate how crossmodal interactions are not limited to the initial sensory activity but can also influence premotor activity in the SC. Address for reprint requests and other correspondence: D. Munoz, Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (E-mail: doug{at}eyeml.queensu.ca )</description><subject>Acoustic Stimulation - methods</subject><subject>Animals</subject><subject>Auditory Pathways - physiology</subject><subject>Brain Mapping</subject><subject>Cell Count - methods</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neurons - classification</subject><subject>Neurons - physiology</subject><subject>Photic Stimulation - methods</subject><subject>Reaction Time - physiology</subject><subject>Saccades - physiology</subject><subject>Sensory Thresholds</subject><subject>Statistics as Topic</subject><subject>Superior Colliculi - cytology</subject><subject>Time Factors</subject><subject>Visual Pathways - physiology</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1v1DAYhy0EokfbkRV5olMOf8TOZUSnllYqAqntbPniN3c-OXawE2gG_vc6XAQT0_uh5_cbHoTeU7KmVLBPR78mlNFyzQgpX6FV_rGCinrzGq0IyTsnVXWG3qV0JIRUgrC36IyKinDG2Ar93saQUheMdvjOD7CPerDBY-vxcAD8PdpOD4Afxh6iDRFvg3O2Gd2Y8JM3EN1k_X5BoddLWnuT2-xgT2do8YNuGm1sg68nwF_DT-jAD-kCvWm1S3C5zHP0dHP9uL0t7r99udt-vi8aQfhQiEbWOy42smTAtIAyz6rcSM7aitOaGdJqxlrRyp1mhFIiQO5K2XBtuKmk5Ofo46m3j-HHCGlQnU0NOKc9hDEpWnHBuKAZLE5gM2uJ0Kp-NhAnRYmafaujV398q9l35j8sxeOuA_OPXgRn4OoEHOz-8MtGUP1hSja4sJ_mrporqbgUdSb5_8mb0blHeB5y5G9C9ablLwGsnNo</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Bell, Andrew H</creator><creator>Meredith, M. Alex</creator><creator>Van Opstal, A. John</creator><creator>Munoz, Douglas P</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20050601</creationdate><title>Crossmodal Integration in the Primate Superior Colliculus Underlying the Preparation and Initiation of Saccadic Eye Movements</title><author>Bell, Andrew H ; Meredith, M. Alex ; Van Opstal, A. John ; Munoz, Douglas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-5c69b358642e2a5e442e748632f73192d0fa22f5f6ba201105e6b46c3ad3d7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Animals</topic><topic>Auditory Pathways - physiology</topic><topic>Brain Mapping</topic><topic>Cell Count - methods</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neurons - classification</topic><topic>Neurons - physiology</topic><topic>Photic Stimulation - methods</topic><topic>Reaction Time - physiology</topic><topic>Saccades - physiology</topic><topic>Sensory Thresholds</topic><topic>Statistics as Topic</topic><topic>Superior Colliculi - cytology</topic><topic>Time Factors</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bell, Andrew H</creatorcontrib><creatorcontrib>Meredith, M. Alex</creatorcontrib><creatorcontrib>Van Opstal, A. John</creatorcontrib><creatorcontrib>Munoz, Douglas P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bell, Andrew H</au><au>Meredith, M. Alex</au><au>Van Opstal, A. John</au><au>Munoz, Douglas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossmodal Integration in the Primate Superior Colliculus Underlying the Preparation and Initiation of Saccadic Eye Movements</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>93</volume><issue>6</issue><spage>3659</spage><epage>3673</epage><pages>3659-3673</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Centre for Neuroscience Studies, Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Queen’s University, Kingston, Ontario, Canada; 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; and 3 Institute for Neuroscience, Department of Biophysics, Radboud University Nijmegen, Nijmegen, The Netherlands Submitted 29 November 2004; accepted in final form 5 February 2005 Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimuli, we recorded activity from dSC neurons while monkeys generated saccades to visual or audiovisual stimuli. To evoke crossmodal interactions of varying strength, we used auditory and visual stimuli of different intensities, presented either in spatial alignment or to opposite hemifields. Spatially aligned audiovisual stimuli evoked the shortest SRTs. In the case of low-intensity stimuli, the response to the auditory component of the aligned audiovisual target increased the activity preceding the response to the visual component, accelerating the onset of the visual response and facilitating the generation of shorter-latency saccades. In the case of high-intensity stimuli, the auditory and visual responses occurred much closer together in time and so there was little opportunity for the auditory stimulus to influence previsual activity. Instead, the reduction in SRT for high-intensity, aligned audiovisual stimuli was correlated with increased premotor activity (activity after visual burst but preceding saccade-aligned burst). These data provide a link between changes in neural activity related to stimulus modality with changes in behavior. They further demonstrate how crossmodal interactions are not limited to the initial sensory activity but can also influence premotor activity in the SC. Address for reprint requests and other correspondence: D. Munoz, Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (E-mail: doug{at}eyeml.queensu.ca )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>15703222</pmid><doi>10.1152/jn.01214.2004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2005-06, Vol.93 (6), p.3659-3673
issn 0022-3077
1522-1598
language eng
recordid cdi_crossref_primary_10_1152_jn_01214_2004
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acoustic Stimulation - methods
Animals
Auditory Pathways - physiology
Brain Mapping
Cell Count - methods
Dose-Response Relationship, Radiation
Macaca mulatta
Male
Models, Neurological
Neurons - classification
Neurons - physiology
Photic Stimulation - methods
Reaction Time - physiology
Saccades - physiology
Sensory Thresholds
Statistics as Topic
Superior Colliculi - cytology
Time Factors
Visual Pathways - physiology
title Crossmodal Integration in the Primate Superior Colliculus Underlying the Preparation and Initiation of Saccadic Eye Movements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossmodal%20Integration%20in%20the%20Primate%20Superior%20Colliculus%20Underlying%20the%20Preparation%20and%20Initiation%20of%20Saccadic%20Eye%20Movements&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Bell,%20Andrew%20H&rft.date=2005-06-01&rft.volume=93&rft.issue=6&rft.spage=3659&rft.epage=3673&rft.pages=3659-3673&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.01214.2004&rft_dat=%3Cproquest_cross%3E17352351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17352351&rft_id=info:pmid/15703222&rfr_iscdi=true