Quantitative Estimation of Calcium Dynamics From Ratiometric Measurements: A Direct, Nonratioing Method

1 Cerebral Physiology Laboratory, Université Paris-Descartes, Unité Mixte de Recherche 8118 du Centre National de la Recherche Scientifique, Paris, France; and 2 Center for Molecular Medicine Cologne, Cologne Excellence Cluster in Aging Associated Diseases, Institute of Zoology and Physiology, Unive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2010-02, Vol.103 (2), p.1130-1144
Hauptverfasser: Joucla, Sebastien, Pippow, Andreas, Kloppenburg, Peter, Pouzat, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 2
container_start_page 1130
container_title Journal of neurophysiology
container_volume 103
creator Joucla, Sebastien
Pippow, Andreas
Kloppenburg, Peter
Pouzat, Christophe
description 1 Cerebral Physiology Laboratory, Université Paris-Descartes, Unité Mixte de Recherche 8118 du Centre National de la Recherche Scientifique, Paris, France; and 2 Center for Molecular Medicine Cologne, Cologne Excellence Cluster in Aging Associated Diseases, Institute of Zoology and Physiology, University of Cologne, Cologne, Germany Submitted 14 May 2009; accepted in final form 30 November 2009 ABSTRACT Measuring variations of intracellular free calcium concentration through the changes in fluorescence of a calcium-sensitive dye is a ubiquitous technique in neuroscience. Despite its popularity, confidence intervals (CIs) on the estimated parameters of calcium dynamics models are seldom given. To address this issue, we have developed a two-stage model for ratiometric measurements obtained with a charge-coupled device (CCD) camera. Its first element embeds a parametric calcium dynamics model into a fluorescence intensity model and its second element probabilistically describes the fluorescence measurements by a CCD camera. Using Monte Carlo simulations, we first show that the classical ratiometric transformation gives reliable CIs for time constants only and not baseline calcium concentration nor influx. We then introduce a direct method, which consists of fitting directly and simultaneously the fluorescence transients at both wavelengths, without any data ratioing. This approach uses a probabilistic description of the camera, leading to the construction of meaningful CIs for the calcium parameters. Moreover, using approaches inspired by constrained linear regression, we can take into account the finite precision on calibrated parameters (such as the dye dissociation constant in the cell). These key features are illustrated on simulated data using Monte Carlo simulations. Moreover, we illustrate the strength of the direct method on experimental recordings from insect olfactory interneurons. In particular, we show how to handle a time-dependent buffer concentration, thereby considerably improving our goodness of fit. The direct method was implemented in the open-source software R and is freely distributed in the CalciOMatic package. Address for reprint requests and other correspondence: C. Pouzat,Cerebral Physiology Laboratory, Université Paris-Descartes, CNRS, UMR 8118, 45 rue des Saints-Pères, 75006 Paris, France(E-mail: christophe.pouzat{at}gmail.com ).
doi_str_mv 10.1152/jn.00414.2009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1152_jn_00414_2009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733936120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-52513faa1554ae7e0be50316b2891af8e1bed10bcff75166a2653f35c0ba9c0e3</originalsourceid><addsrcrecordid>eNpFkV2PEyEUhonRuHX10lvDnZo49QDDfHjXdHddk6rR6DVh6JmWZgYqMGv672Vso1ecHJ48gfcl5CWDJWOSvz-4JUDJyiUHaB-RRd7xgsm2eUwWAHkWUNdX5FmMBwCoJfCn5Iq1rZS8qRZk923SLtmkk31AehuTHfPoHfU9XevB2GmkNyenR2sivQt-pN_n-xFTsIZ-Rh2ngCO6FD_QFb2xAU16R794F2bMul1m0t5vn5MnvR4ivric1-Tn3e2P9X2x-frx03q1KUzJZSokl0z0WjMpS401QocSBKs63rRM9w2yDrcMOtP3tWRVpXklRS-kgU63BlBck7dn714P6hjyb8JJeW3V_Wqj5l3OgEvRlA8ss6_P7DH4XxPGpEYbDQ6DduinqGohWlExDpkszqQJPsaA_T81AzXXoA5O_a1BzTVk_tXFPHUjbv_Tl9wz8ObyTLvb_86pqeP-FK0f_O40uxgIxbNZgPgDkDSQrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733936120</pqid></control><display><type>article</type><title>Quantitative Estimation of Calcium Dynamics From Ratiometric Measurements: A Direct, Nonratioing Method</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Joucla, Sebastien ; Pippow, Andreas ; Kloppenburg, Peter ; Pouzat, Christophe</creator><creatorcontrib>Joucla, Sebastien ; Pippow, Andreas ; Kloppenburg, Peter ; Pouzat, Christophe</creatorcontrib><description>1 Cerebral Physiology Laboratory, Université Paris-Descartes, Unité Mixte de Recherche 8118 du Centre National de la Recherche Scientifique, Paris, France; and 2 Center for Molecular Medicine Cologne, Cologne Excellence Cluster in Aging Associated Diseases, Institute of Zoology and Physiology, University of Cologne, Cologne, Germany Submitted 14 May 2009; accepted in final form 30 November 2009 ABSTRACT Measuring variations of intracellular free calcium concentration through the changes in fluorescence of a calcium-sensitive dye is a ubiquitous technique in neuroscience. Despite its popularity, confidence intervals (CIs) on the estimated parameters of calcium dynamics models are seldom given. To address this issue, we have developed a two-stage model for ratiometric measurements obtained with a charge-coupled device (CCD) camera. Its first element embeds a parametric calcium dynamics model into a fluorescence intensity model and its second element probabilistically describes the fluorescence measurements by a CCD camera. Using Monte Carlo simulations, we first show that the classical ratiometric transformation gives reliable CIs for time constants only and not baseline calcium concentration nor influx. We then introduce a direct method, which consists of fitting directly and simultaneously the fluorescence transients at both wavelengths, without any data ratioing. This approach uses a probabilistic description of the camera, leading to the construction of meaningful CIs for the calcium parameters. Moreover, using approaches inspired by constrained linear regression, we can take into account the finite precision on calibrated parameters (such as the dye dissociation constant in the cell). These key features are illustrated on simulated data using Monte Carlo simulations. Moreover, we illustrate the strength of the direct method on experimental recordings from insect olfactory interneurons. In particular, we show how to handle a time-dependent buffer concentration, thereby considerably improving our goodness of fit. The direct method was implemented in the open-source software R and is freely distributed in the CalciOMatic package. Address for reprint requests and other correspondence: C. Pouzat,Cerebral Physiology Laboratory, Université Paris-Descartes, CNRS, UMR 8118, 45 rue des Saints-Pères, 75006 Paris, France(E-mail: christophe.pouzat{at}gmail.com ).</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00414.2009</identifier><identifier>PMID: 19955286</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Animals ; Bioinformatics ; Calcium ; Calcium - analysis ; Calcium - metabolism ; Calcium Signaling ; Calcium Signaling - physiology ; Cells, Cultured ; Computer Science ; Computer Simulation ; Humans ; Image Interpretation, Computer-Assisted ; Image Interpretation, Computer-Assisted - methods ; Life Sciences ; Microscopy, Fluorescence ; Microscopy, Fluorescence - methods ; Models, Neurological ; Neurons ; Neurons - physiology ; Quantitative Methods</subject><ispartof>Journal of neurophysiology, 2010-02, Vol.103 (2), p.1130-1144</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-52513faa1554ae7e0be50316b2891af8e1bed10bcff75166a2653f35c0ba9c0e3</citedby><cites>FETCH-LOGICAL-c425t-52513faa1554ae7e0be50316b2891af8e1bed10bcff75166a2653f35c0ba9c0e3</cites><orcidid>0000-0002-4554-404X ; 0000-0002-2844-8099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3025,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19955286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00725384$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Joucla, Sebastien</creatorcontrib><creatorcontrib>Pippow, Andreas</creatorcontrib><creatorcontrib>Kloppenburg, Peter</creatorcontrib><creatorcontrib>Pouzat, Christophe</creatorcontrib><title>Quantitative Estimation of Calcium Dynamics From Ratiometric Measurements: A Direct, Nonratioing Method</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Cerebral Physiology Laboratory, Université Paris-Descartes, Unité Mixte de Recherche 8118 du Centre National de la Recherche Scientifique, Paris, France; and 2 Center for Molecular Medicine Cologne, Cologne Excellence Cluster in Aging Associated Diseases, Institute of Zoology and Physiology, University of Cologne, Cologne, Germany Submitted 14 May 2009; accepted in final form 30 November 2009 ABSTRACT Measuring variations of intracellular free calcium concentration through the changes in fluorescence of a calcium-sensitive dye is a ubiquitous technique in neuroscience. Despite its popularity, confidence intervals (CIs) on the estimated parameters of calcium dynamics models are seldom given. To address this issue, we have developed a two-stage model for ratiometric measurements obtained with a charge-coupled device (CCD) camera. Its first element embeds a parametric calcium dynamics model into a fluorescence intensity model and its second element probabilistically describes the fluorescence measurements by a CCD camera. Using Monte Carlo simulations, we first show that the classical ratiometric transformation gives reliable CIs for time constants only and not baseline calcium concentration nor influx. We then introduce a direct method, which consists of fitting directly and simultaneously the fluorescence transients at both wavelengths, without any data ratioing. This approach uses a probabilistic description of the camera, leading to the construction of meaningful CIs for the calcium parameters. Moreover, using approaches inspired by constrained linear regression, we can take into account the finite precision on calibrated parameters (such as the dye dissociation constant in the cell). These key features are illustrated on simulated data using Monte Carlo simulations. Moreover, we illustrate the strength of the direct method on experimental recordings from insect olfactory interneurons. In particular, we show how to handle a time-dependent buffer concentration, thereby considerably improving our goodness of fit. The direct method was implemented in the open-source software R and is freely distributed in the CalciOMatic package. Address for reprint requests and other correspondence: C. Pouzat,Cerebral Physiology Laboratory, Université Paris-Descartes, CNRS, UMR 8118, 45 rue des Saints-Pères, 75006 Paris, France(E-mail: christophe.pouzat{at}gmail.com ).</description><subject>Animals</subject><subject>Bioinformatics</subject><subject>Calcium</subject><subject>Calcium - analysis</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Calcium Signaling - physiology</subject><subject>Cells, Cultured</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Life Sciences</subject><subject>Microscopy, Fluorescence</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Quantitative Methods</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkV2PEyEUhonRuHX10lvDnZo49QDDfHjXdHddk6rR6DVh6JmWZgYqMGv672Vso1ecHJ48gfcl5CWDJWOSvz-4JUDJyiUHaB-RRd7xgsm2eUwWAHkWUNdX5FmMBwCoJfCn5Iq1rZS8qRZk923SLtmkk31AehuTHfPoHfU9XevB2GmkNyenR2sivQt-pN_n-xFTsIZ-Rh2ngCO6FD_QFb2xAU16R794F2bMul1m0t5vn5MnvR4ivric1-Tn3e2P9X2x-frx03q1KUzJZSokl0z0WjMpS401QocSBKs63rRM9w2yDrcMOtP3tWRVpXklRS-kgU63BlBck7dn714P6hjyb8JJeW3V_Wqj5l3OgEvRlA8ss6_P7DH4XxPGpEYbDQ6DduinqGohWlExDpkszqQJPsaA_T81AzXXoA5O_a1BzTVk_tXFPHUjbv_Tl9wz8ObyTLvb_86pqeP-FK0f_O40uxgIxbNZgPgDkDSQrA</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Joucla, Sebastien</creator><creator>Pippow, Andreas</creator><creator>Kloppenburg, Peter</creator><creator>Pouzat, Christophe</creator><general>Am Phys Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4554-404X</orcidid><orcidid>https://orcid.org/0000-0002-2844-8099</orcidid></search><sort><creationdate>20100201</creationdate><title>Quantitative Estimation of Calcium Dynamics From Ratiometric Measurements: A Direct, Nonratioing Method</title><author>Joucla, Sebastien ; Pippow, Andreas ; Kloppenburg, Peter ; Pouzat, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-52513faa1554ae7e0be50316b2891af8e1bed10bcff75166a2653f35c0ba9c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Bioinformatics</topic><topic>Calcium</topic><topic>Calcium - analysis</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Calcium Signaling - physiology</topic><topic>Cells, Cultured</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Life Sciences</topic><topic>Microscopy, Fluorescence</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Quantitative Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joucla, Sebastien</creatorcontrib><creatorcontrib>Pippow, Andreas</creatorcontrib><creatorcontrib>Kloppenburg, Peter</creatorcontrib><creatorcontrib>Pouzat, Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joucla, Sebastien</au><au>Pippow, Andreas</au><au>Kloppenburg, Peter</au><au>Pouzat, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Estimation of Calcium Dynamics From Ratiometric Measurements: A Direct, Nonratioing Method</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>103</volume><issue>2</issue><spage>1130</spage><epage>1144</epage><pages>1130-1144</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Cerebral Physiology Laboratory, Université Paris-Descartes, Unité Mixte de Recherche 8118 du Centre National de la Recherche Scientifique, Paris, France; and 2 Center for Molecular Medicine Cologne, Cologne Excellence Cluster in Aging Associated Diseases, Institute of Zoology and Physiology, University of Cologne, Cologne, Germany Submitted 14 May 2009; accepted in final form 30 November 2009 ABSTRACT Measuring variations of intracellular free calcium concentration through the changes in fluorescence of a calcium-sensitive dye is a ubiquitous technique in neuroscience. Despite its popularity, confidence intervals (CIs) on the estimated parameters of calcium dynamics models are seldom given. To address this issue, we have developed a two-stage model for ratiometric measurements obtained with a charge-coupled device (CCD) camera. Its first element embeds a parametric calcium dynamics model into a fluorescence intensity model and its second element probabilistically describes the fluorescence measurements by a CCD camera. Using Monte Carlo simulations, we first show that the classical ratiometric transformation gives reliable CIs for time constants only and not baseline calcium concentration nor influx. We then introduce a direct method, which consists of fitting directly and simultaneously the fluorescence transients at both wavelengths, without any data ratioing. This approach uses a probabilistic description of the camera, leading to the construction of meaningful CIs for the calcium parameters. Moreover, using approaches inspired by constrained linear regression, we can take into account the finite precision on calibrated parameters (such as the dye dissociation constant in the cell). These key features are illustrated on simulated data using Monte Carlo simulations. Moreover, we illustrate the strength of the direct method on experimental recordings from insect olfactory interneurons. In particular, we show how to handle a time-dependent buffer concentration, thereby considerably improving our goodness of fit. The direct method was implemented in the open-source software R and is freely distributed in the CalciOMatic package. Address for reprint requests and other correspondence: C. Pouzat,Cerebral Physiology Laboratory, Université Paris-Descartes, CNRS, UMR 8118, 45 rue des Saints-Pères, 75006 Paris, France(E-mail: christophe.pouzat{at}gmail.com ).</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>19955286</pmid><doi>10.1152/jn.00414.2009</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4554-404X</orcidid><orcidid>https://orcid.org/0000-0002-2844-8099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2010-02, Vol.103 (2), p.1130-1144
issn 0022-3077
1522-1598
language eng
recordid cdi_crossref_primary_10_1152_jn_00414_2009
source MEDLINE; American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Bioinformatics
Calcium
Calcium - analysis
Calcium - metabolism
Calcium Signaling
Calcium Signaling - physiology
Cells, Cultured
Computer Science
Computer Simulation
Humans
Image Interpretation, Computer-Assisted
Image Interpretation, Computer-Assisted - methods
Life Sciences
Microscopy, Fluorescence
Microscopy, Fluorescence - methods
Models, Neurological
Neurons
Neurons - physiology
Quantitative Methods
title Quantitative Estimation of Calcium Dynamics From Ratiometric Measurements: A Direct, Nonratioing Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Estimation%20of%20Calcium%20Dynamics%20From%20Ratiometric%20Measurements:%20A%20Direct,%20Nonratioing%20Method&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Joucla,%20Sebastien&rft.date=2010-02-01&rft.volume=103&rft.issue=2&rft.spage=1130&rft.epage=1144&rft.pages=1130-1144&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00414.2009&rft_dat=%3Cproquest_cross%3E733936120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733936120&rft_id=info:pmid/19955286&rfr_iscdi=true