Dendrite-to-Soma Input/Output Function of Continuous Time-Varying Signals in Hippocampal CA1 Pyramidal Neurons
1 Department of Physiology, McGill University, Montreal, Quebec, Canada; and 2 Biology and Biochemistry, University of Houston, Houston, Texas Submitted 11 April 2007; accepted in final form 17 September 2007 We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites a...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2007-11, Vol.98 (5), p.2943-2955 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2955 |
---|---|
container_issue | 5 |
container_start_page | 2943 |
container_title | Journal of neurophysiology |
container_volume | 98 |
creator | Cook, Erik P Guest, Jennifer A Liang, Yong Masse, Nicolas Y Colbert, Costa M |
description | 1 Department of Physiology, McGill University, Montreal, Quebec, Canada; and 2 Biology and Biochemistry, University of Houston, Houston, Texas
Submitted 11 April 2007;
accepted in final form 17 September 2007
We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites are likely to receive in vivo. We propose a functional model of the dendrite-to-soma input/output relationship that combines temporal integration and static-gain control mechanisms. Using simultaneous dual whole cell recordings, we injected 50 s of subthreshold and suprathreshold zero-mean white-noise current into the primary dendritic trunk along the proximal 2/3 of stratum radiatum and measured the membrane potential at the soma. Applying a nonlinear system-identification analysis, we found that a cascade of a linear filter followed by an adapting static-gain term fully accounted for the nonspiking input/output relationship between the dendrite and soma. The estimated filters contained a prominent band-pass region in the 1- to 10-Hz frequency range that remained constant as a function of stimulus variance. The gain of the dendrite-to-soma input/output relationship, in contrast, varied as a function of stimulus variance. When the contribution of the voltage-dependent current I h was eliminated, the estimated filters lost their band-pass properties and the gain regulation was substantially altered. Our findings suggest that the dendrite-to-soma input/output relationship for proximal apical inputs to CA1 pyramidal neurons is well described as a band-pass filter in the theta frequency range followed by a gain-control nonlinearity that dynamically adapts to the statistics of the input signal.
Address for reprint requests and other correspondence: E. P. Cook, Dept. of Physiology, McGill University, 3655 Sir William Osler, Montreal, QC H3G 1Y6, Canada (E-mail: erik.cook{at}mcgill.ca ) |
doi_str_mv | 10.1152/jn.00414.2007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1152_jn_00414_2007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20370522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-4bc83676c80a206b589ef35a856e10fd5b267f9d86714af383ebceeda16a94453</originalsourceid><addsrcrecordid>eNp1kM1P2zAYh60JNDq2467IJzil2HGcOEfU0YGEAIluV8tJ3rSuEjv4Q1v_-7m0GidO74ee9ye9D0LfKZlTyvPrrZkTUtBinhNSfUKztMszymtxgmaEpJ6RqjpDX7zfkkRwkn9GZ7QSghainCHzA0zndIAs2OzFjgrfmymG66cYUsHLaNqgrcG2xwtrgjbRRo9XeoTst3I7bdb4Ra-NGjzWBt_pabKtGic14MUNxc87p0bdpekRorPGf0WnfWLh27Geo1_L29XiLnt4-nm_uHnIWk5YyIqmFaysylYQlZOy4aKGnnEleAmU9B1v8rLq606UFS1UzwSDpgXoFC1VXRScnaPLQ-7k7GsEH-SofQvDoAykB2ROWEWSqQRmB7B11nsHvZycHtNnkhK5Fyy3Rr4JlnvBib84BsdmhO6dPhpNwNUB2Oj15o92IKfNzms72PVun1ULyWVeFyyR7GNyGYdhBX9DOvl_IaeuZ_8AXE6Xcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20370522</pqid></control><display><type>article</type><title>Dendrite-to-Soma Input/Output Function of Continuous Time-Varying Signals in Hippocampal CA1 Pyramidal Neurons</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Cook, Erik P ; Guest, Jennifer A ; Liang, Yong ; Masse, Nicolas Y ; Colbert, Costa M</creator><creatorcontrib>Cook, Erik P ; Guest, Jennifer A ; Liang, Yong ; Masse, Nicolas Y ; Colbert, Costa M</creatorcontrib><description>1 Department of Physiology, McGill University, Montreal, Quebec, Canada; and 2 Biology and Biochemistry, University of Houston, Houston, Texas
Submitted 11 April 2007;
accepted in final form 17 September 2007
We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites are likely to receive in vivo. We propose a functional model of the dendrite-to-soma input/output relationship that combines temporal integration and static-gain control mechanisms. Using simultaneous dual whole cell recordings, we injected 50 s of subthreshold and suprathreshold zero-mean white-noise current into the primary dendritic trunk along the proximal 2/3 of stratum radiatum and measured the membrane potential at the soma. Applying a nonlinear system-identification analysis, we found that a cascade of a linear filter followed by an adapting static-gain term fully accounted for the nonspiking input/output relationship between the dendrite and soma. The estimated filters contained a prominent band-pass region in the 1- to 10-Hz frequency range that remained constant as a function of stimulus variance. The gain of the dendrite-to-soma input/output relationship, in contrast, varied as a function of stimulus variance. When the contribution of the voltage-dependent current I h was eliminated, the estimated filters lost their band-pass properties and the gain regulation was substantially altered. Our findings suggest that the dendrite-to-soma input/output relationship for proximal apical inputs to CA1 pyramidal neurons is well described as a band-pass filter in the theta frequency range followed by a gain-control nonlinearity that dynamically adapts to the statistics of the input signal.
Address for reprint requests and other correspondence: E. P. Cook, Dept. of Physiology, McGill University, 3655 Sir William Osler, Montreal, QC H3G 1Y6, Canada (E-mail: erik.cook{at}mcgill.ca )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00414.2007</identifier><identifier>PMID: 17881486</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Axons - physiology ; Dendrites - physiology ; Dose-Response Relationship, Radiation ; Electric Stimulation - methods ; Hippocampus - cytology ; In Vitro Techniques ; Male ; Models, Neurological ; Patch-Clamp Techniques ; Pyramidal Cells - cytology ; Rats ; Rats, Sprague-Dawley ; Time Factors</subject><ispartof>Journal of neurophysiology, 2007-11, Vol.98 (5), p.2943-2955</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-4bc83676c80a206b589ef35a856e10fd5b267f9d86714af383ebceeda16a94453</citedby><cites>FETCH-LOGICAL-c503t-4bc83676c80a206b589ef35a856e10fd5b267f9d86714af383ebceeda16a94453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17881486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, Erik P</creatorcontrib><creatorcontrib>Guest, Jennifer A</creatorcontrib><creatorcontrib>Liang, Yong</creatorcontrib><creatorcontrib>Masse, Nicolas Y</creatorcontrib><creatorcontrib>Colbert, Costa M</creatorcontrib><title>Dendrite-to-Soma Input/Output Function of Continuous Time-Varying Signals in Hippocampal CA1 Pyramidal Neurons</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>1 Department of Physiology, McGill University, Montreal, Quebec, Canada; and 2 Biology and Biochemistry, University of Houston, Houston, Texas
Submitted 11 April 2007;
accepted in final form 17 September 2007
We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites are likely to receive in vivo. We propose a functional model of the dendrite-to-soma input/output relationship that combines temporal integration and static-gain control mechanisms. Using simultaneous dual whole cell recordings, we injected 50 s of subthreshold and suprathreshold zero-mean white-noise current into the primary dendritic trunk along the proximal 2/3 of stratum radiatum and measured the membrane potential at the soma. Applying a nonlinear system-identification analysis, we found that a cascade of a linear filter followed by an adapting static-gain term fully accounted for the nonspiking input/output relationship between the dendrite and soma. The estimated filters contained a prominent band-pass region in the 1- to 10-Hz frequency range that remained constant as a function of stimulus variance. The gain of the dendrite-to-soma input/output relationship, in contrast, varied as a function of stimulus variance. When the contribution of the voltage-dependent current I h was eliminated, the estimated filters lost their band-pass properties and the gain regulation was substantially altered. Our findings suggest that the dendrite-to-soma input/output relationship for proximal apical inputs to CA1 pyramidal neurons is well described as a band-pass filter in the theta frequency range followed by a gain-control nonlinearity that dynamically adapts to the statistics of the input signal.
Address for reprint requests and other correspondence: E. P. Cook, Dept. of Physiology, McGill University, 3655 Sir William Osler, Montreal, QC H3G 1Y6, Canada (E-mail: erik.cook{at}mcgill.ca )</description><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Dendrites - physiology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation - methods</subject><subject>Hippocampus - cytology</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Patch-Clamp Techniques</subject><subject>Pyramidal Cells - cytology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Time Factors</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1P2zAYh60JNDq2467IJzil2HGcOEfU0YGEAIluV8tJ3rSuEjv4Q1v_-7m0GidO74ee9ye9D0LfKZlTyvPrrZkTUtBinhNSfUKztMszymtxgmaEpJ6RqjpDX7zfkkRwkn9GZ7QSghainCHzA0zndIAs2OzFjgrfmymG66cYUsHLaNqgrcG2xwtrgjbRRo9XeoTst3I7bdb4Ra-NGjzWBt_pabKtGic14MUNxc87p0bdpekRorPGf0WnfWLh27Geo1_L29XiLnt4-nm_uHnIWk5YyIqmFaysylYQlZOy4aKGnnEleAmU9B1v8rLq606UFS1UzwSDpgXoFC1VXRScnaPLQ-7k7GsEH-SofQvDoAykB2ROWEWSqQRmB7B11nsHvZycHtNnkhK5Fyy3Rr4JlnvBib84BsdmhO6dPhpNwNUB2Oj15o92IKfNzms72PVun1ULyWVeFyyR7GNyGYdhBX9DOvl_IaeuZ_8AXE6Xcg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Cook, Erik P</creator><creator>Guest, Jennifer A</creator><creator>Liang, Yong</creator><creator>Masse, Nicolas Y</creator><creator>Colbert, Costa M</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20071101</creationdate><title>Dendrite-to-Soma Input/Output Function of Continuous Time-Varying Signals in Hippocampal CA1 Pyramidal Neurons</title><author>Cook, Erik P ; Guest, Jennifer A ; Liang, Yong ; Masse, Nicolas Y ; Colbert, Costa M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-4bc83676c80a206b589ef35a856e10fd5b267f9d86714af383ebceeda16a94453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Dendrites - physiology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation - methods</topic><topic>Hippocampus - cytology</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Patch-Clamp Techniques</topic><topic>Pyramidal Cells - cytology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Erik P</creatorcontrib><creatorcontrib>Guest, Jennifer A</creatorcontrib><creatorcontrib>Liang, Yong</creatorcontrib><creatorcontrib>Masse, Nicolas Y</creatorcontrib><creatorcontrib>Colbert, Costa M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Erik P</au><au>Guest, Jennifer A</au><au>Liang, Yong</au><au>Masse, Nicolas Y</au><au>Colbert, Costa M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite-to-Soma Input/Output Function of Continuous Time-Varying Signals in Hippocampal CA1 Pyramidal Neurons</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>98</volume><issue>5</issue><spage>2943</spage><epage>2955</epage><pages>2943-2955</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>1 Department of Physiology, McGill University, Montreal, Quebec, Canada; and 2 Biology and Biochemistry, University of Houston, Houston, Texas
Submitted 11 April 2007;
accepted in final form 17 September 2007
We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites are likely to receive in vivo. We propose a functional model of the dendrite-to-soma input/output relationship that combines temporal integration and static-gain control mechanisms. Using simultaneous dual whole cell recordings, we injected 50 s of subthreshold and suprathreshold zero-mean white-noise current into the primary dendritic trunk along the proximal 2/3 of stratum radiatum and measured the membrane potential at the soma. Applying a nonlinear system-identification analysis, we found that a cascade of a linear filter followed by an adapting static-gain term fully accounted for the nonspiking input/output relationship between the dendrite and soma. The estimated filters contained a prominent band-pass region in the 1- to 10-Hz frequency range that remained constant as a function of stimulus variance. The gain of the dendrite-to-soma input/output relationship, in contrast, varied as a function of stimulus variance. When the contribution of the voltage-dependent current I h was eliminated, the estimated filters lost their band-pass properties and the gain regulation was substantially altered. Our findings suggest that the dendrite-to-soma input/output relationship for proximal apical inputs to CA1 pyramidal neurons is well described as a band-pass filter in the theta frequency range followed by a gain-control nonlinearity that dynamically adapts to the statistics of the input signal.
Address for reprint requests and other correspondence: E. P. Cook, Dept. of Physiology, McGill University, 3655 Sir William Osler, Montreal, QC H3G 1Y6, Canada (E-mail: erik.cook{at}mcgill.ca )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>17881486</pmid><doi>10.1152/jn.00414.2007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 2007-11, Vol.98 (5), p.2943-2955 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_crossref_primary_10_1152_jn_00414_2007 |
source | MEDLINE; American Physiological Society Paid; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Action Potentials - physiology Action Potentials - radiation effects Animals Axons - physiology Dendrites - physiology Dose-Response Relationship, Radiation Electric Stimulation - methods Hippocampus - cytology In Vitro Techniques Male Models, Neurological Patch-Clamp Techniques Pyramidal Cells - cytology Rats Rats, Sprague-Dawley Time Factors |
title | Dendrite-to-Soma Input/Output Function of Continuous Time-Varying Signals in Hippocampal CA1 Pyramidal Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite-to-Soma%20Input/Output%20Function%20of%20Continuous%20Time-Varying%20Signals%20in%20Hippocampal%20CA1%20Pyramidal%20Neurons&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Cook,%20Erik%20P&rft.date=2007-11-01&rft.volume=98&rft.issue=5&rft.spage=2943&rft.epage=2955&rft.pages=2943-2955&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00414.2007&rft_dat=%3Cproquest_cross%3E20370522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20370522&rft_id=info:pmid/17881486&rfr_iscdi=true |