Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells

1  Division of Pulmonary and Critical Care Medicine and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore 21224; and 2  Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland 21201 Hyperoxia increases reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2003-01, Vol.284 (1), p.26-L38
Hauptverfasser: Parinandi, Narasimham L, Kleinberg, Michael A, Usatyuk, Peter V, Cummings, Rhett J, Pennathur, Arjun, Cardounel, Arturo J, Zweier, Jay L, Garcia, Joe G. N, Natarajan, Viswanathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L38
container_issue 1
container_start_page 26
container_title American journal of physiology. Lung cellular and molecular physiology
container_volume 284
creator Parinandi, Narasimham L
Kleinberg, Michael A
Usatyuk, Peter V
Cummings, Rhett J
Pennathur, Arjun
Cardounel, Arturo J
Zweier, Jay L
Garcia, Joe G. N
Natarajan, Viswanathan
description 1  Division of Pulmonary and Critical Care Medicine and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore 21224; and 2  Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland 21201 Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs. reactive oxygen species; lung vascular endothelial cells; mitogen-activated protein kinases
doi_str_mv 10.1152/ajplung.00123.2002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1152_ajplung_00123_2002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72880684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6c4d4de703bd6dc43e79d8af4555b382f58556923029b751679ad567f82800463</originalsourceid><addsrcrecordid>eNp1kEFv1DAQhS1UREvpH-BQ-VRRiSxjx3a8x1VpWaSl7aE9W07sbLz1OmmcQPPv8bJbOHEaz_h7T08PoY8EZoRw-kVvOj-G9QyA0HxGAegbdJI-aEY4sKP0BgYZCODH6H2MGwDgAOIdOk68lLkQJ2iznDrbty9OZy6YsbIG3y6-frq_XOJ0NDparKvB_dSDawPWweDerke_X8sJ_1jc4ycXEhexC7gZtzrgXSpsg2mHxnqnPa6s9_EDeltrH-3ZYZ6ix5vrh6tltrr79v1qscoqxsmQiYoZZmwBeWmEqVhui7mRumac8zKXtOaSczGnOdB5WXAiirk2XBS1pBKAifwUXex9u759Hm0c1NbFXQIdbDtGVVApQUiWQLoHq76Nsbe16nq31f2kCKhdw-rQsPrTsNo1nETnB_ex3FrzT3KoNAFyDzRu3fxyvVVdM0XX-nY9qZvR-wf7Mrw6U8kUUSsqVGfqJP38f-lrlr-S_DeZ5Jzx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72880684</pqid></control><display><type>article</type><title>Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Parinandi, Narasimham L ; Kleinberg, Michael A ; Usatyuk, Peter V ; Cummings, Rhett J ; Pennathur, Arjun ; Cardounel, Arturo J ; Zweier, Jay L ; Garcia, Joe G. N ; Natarajan, Viswanathan</creator><creatorcontrib>Parinandi, Narasimham L ; Kleinberg, Michael A ; Usatyuk, Peter V ; Cummings, Rhett J ; Pennathur, Arjun ; Cardounel, Arturo J ; Zweier, Jay L ; Garcia, Joe G. N ; Natarajan, Viswanathan</creatorcontrib><description>1  Division of Pulmonary and Critical Care Medicine and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore 21224; and 2  Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland 21201 Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs. reactive oxygen species; lung vascular endothelial cells; mitogen-activated protein kinases</description><identifier>ISSN: 1040-0605</identifier><identifier>EISSN: 1522-1504</identifier><identifier>DOI: 10.1152/ajplung.00123.2002</identifier><identifier>PMID: 12388366</identifier><language>eng</language><publisher>United States</publisher><subject>Antisense Elements (Genetics) - pharmacology ; Cells, Cultured ; Endothelium, Vascular - enzymology ; Enzyme Activation - physiology ; Enzyme Inhibitors - pharmacology ; Humans ; Hydrogen Peroxide - metabolism ; Hyperoxia - enzymology ; Hyperoxia - physiopathology ; Membrane Transport Proteins ; Mitogen-Activated Protein Kinases - physiology ; NADPH Dehydrogenase - genetics ; NADPH Oxidases - metabolism ; NADPH Oxidases - physiology ; Onium Compounds - pharmacology ; Phagocytosis - physiology ; Phosphoproteins - genetics ; Pulmonary Artery - enzymology ; Reactive Oxygen Species - antagonists &amp; inhibitors ; Reactive Oxygen Species - metabolism</subject><ispartof>American journal of physiology. Lung cellular and molecular physiology, 2003-01, Vol.284 (1), p.26-L38</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6c4d4de703bd6dc43e79d8af4555b382f58556923029b751679ad567f82800463</citedby><cites>FETCH-LOGICAL-c451t-6c4d4de703bd6dc43e79d8af4555b382f58556923029b751679ad567f82800463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3041,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12388366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parinandi, Narasimham L</creatorcontrib><creatorcontrib>Kleinberg, Michael A</creatorcontrib><creatorcontrib>Usatyuk, Peter V</creatorcontrib><creatorcontrib>Cummings, Rhett J</creatorcontrib><creatorcontrib>Pennathur, Arjun</creatorcontrib><creatorcontrib>Cardounel, Arturo J</creatorcontrib><creatorcontrib>Zweier, Jay L</creatorcontrib><creatorcontrib>Garcia, Joe G. N</creatorcontrib><creatorcontrib>Natarajan, Viswanathan</creatorcontrib><title>Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells</title><title>American journal of physiology. Lung cellular and molecular physiology</title><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><description>1  Division of Pulmonary and Critical Care Medicine and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore 21224; and 2  Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland 21201 Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs. reactive oxygen species; lung vascular endothelial cells; mitogen-activated protein kinases</description><subject>Antisense Elements (Genetics) - pharmacology</subject><subject>Cells, Cultured</subject><subject>Endothelium, Vascular - enzymology</subject><subject>Enzyme Activation - physiology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hyperoxia - enzymology</subject><subject>Hyperoxia - physiopathology</subject><subject>Membrane Transport Proteins</subject><subject>Mitogen-Activated Protein Kinases - physiology</subject><subject>NADPH Dehydrogenase - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>NADPH Oxidases - physiology</subject><subject>Onium Compounds - pharmacology</subject><subject>Phagocytosis - physiology</subject><subject>Phosphoproteins - genetics</subject><subject>Pulmonary Artery - enzymology</subject><subject>Reactive Oxygen Species - antagonists &amp; inhibitors</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>1040-0605</issn><issn>1522-1504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFv1DAQhS1UREvpH-BQ-VRRiSxjx3a8x1VpWaSl7aE9W07sbLz1OmmcQPPv8bJbOHEaz_h7T08PoY8EZoRw-kVvOj-G9QyA0HxGAegbdJI-aEY4sKP0BgYZCODH6H2MGwDgAOIdOk68lLkQJ2iznDrbty9OZy6YsbIG3y6-frq_XOJ0NDparKvB_dSDawPWweDerke_X8sJ_1jc4ycXEhexC7gZtzrgXSpsg2mHxnqnPa6s9_EDeltrH-3ZYZ6ix5vrh6tltrr79v1qscoqxsmQiYoZZmwBeWmEqVhui7mRumac8zKXtOaSczGnOdB5WXAiirk2XBS1pBKAifwUXex9u759Hm0c1NbFXQIdbDtGVVApQUiWQLoHq76Nsbe16nq31f2kCKhdw-rQsPrTsNo1nETnB_ex3FrzT3KoNAFyDzRu3fxyvVVdM0XX-nY9qZvR-wf7Mrw6U8kUUSsqVGfqJP38f-lrlr-S_DeZ5Jzx</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Parinandi, Narasimham L</creator><creator>Kleinberg, Michael A</creator><creator>Usatyuk, Peter V</creator><creator>Cummings, Rhett J</creator><creator>Pennathur, Arjun</creator><creator>Cardounel, Arturo J</creator><creator>Zweier, Jay L</creator><creator>Garcia, Joe G. N</creator><creator>Natarajan, Viswanathan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells</title><author>Parinandi, Narasimham L ; Kleinberg, Michael A ; Usatyuk, Peter V ; Cummings, Rhett J ; Pennathur, Arjun ; Cardounel, Arturo J ; Zweier, Jay L ; Garcia, Joe G. N ; Natarajan, Viswanathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6c4d4de703bd6dc43e79d8af4555b382f58556923029b751679ad567f82800463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Antisense Elements (Genetics) - pharmacology</topic><topic>Cells, Cultured</topic><topic>Endothelium, Vascular - enzymology</topic><topic>Enzyme Activation - physiology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hyperoxia - enzymology</topic><topic>Hyperoxia - physiopathology</topic><topic>Membrane Transport Proteins</topic><topic>Mitogen-Activated Protein Kinases - physiology</topic><topic>NADPH Dehydrogenase - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>NADPH Oxidases - physiology</topic><topic>Onium Compounds - pharmacology</topic><topic>Phagocytosis - physiology</topic><topic>Phosphoproteins - genetics</topic><topic>Pulmonary Artery - enzymology</topic><topic>Reactive Oxygen Species - antagonists &amp; inhibitors</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parinandi, Narasimham L</creatorcontrib><creatorcontrib>Kleinberg, Michael A</creatorcontrib><creatorcontrib>Usatyuk, Peter V</creatorcontrib><creatorcontrib>Cummings, Rhett J</creatorcontrib><creatorcontrib>Pennathur, Arjun</creatorcontrib><creatorcontrib>Cardounel, Arturo J</creatorcontrib><creatorcontrib>Zweier, Jay L</creatorcontrib><creatorcontrib>Garcia, Joe G. N</creatorcontrib><creatorcontrib>Natarajan, Viswanathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parinandi, Narasimham L</au><au>Kleinberg, Michael A</au><au>Usatyuk, Peter V</au><au>Cummings, Rhett J</au><au>Pennathur, Arjun</au><au>Cardounel, Arturo J</au><au>Zweier, Jay L</au><au>Garcia, Joe G. N</au><au>Natarajan, Viswanathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells</atitle><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>284</volume><issue>1</issue><spage>26</spage><epage>L38</epage><pages>26-L38</pages><issn>1040-0605</issn><eissn>1522-1504</eissn><abstract>1  Division of Pulmonary and Critical Care Medicine and Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore 21224; and 2  Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland 21201 Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs. reactive oxygen species; lung vascular endothelial cells; mitogen-activated protein kinases</abstract><cop>United States</cop><pmid>12388366</pmid><doi>10.1152/ajplung.00123.2002</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-0605
ispartof American journal of physiology. Lung cellular and molecular physiology, 2003-01, Vol.284 (1), p.26-L38
issn 1040-0605
1522-1504
language eng
recordid cdi_crossref_primary_10_1152_ajplung_00123_2002
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Antisense Elements (Genetics) - pharmacology
Cells, Cultured
Endothelium, Vascular - enzymology
Enzyme Activation - physiology
Enzyme Inhibitors - pharmacology
Humans
Hydrogen Peroxide - metabolism
Hyperoxia - enzymology
Hyperoxia - physiopathology
Membrane Transport Proteins
Mitogen-Activated Protein Kinases - physiology
NADPH Dehydrogenase - genetics
NADPH Oxidases - metabolism
NADPH Oxidases - physiology
Onium Compounds - pharmacology
Phagocytosis - physiology
Phosphoproteins - genetics
Pulmonary Artery - enzymology
Reactive Oxygen Species - antagonists & inhibitors
Reactive Oxygen Species - metabolism
title Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperoxia-induced%20NAD(P)H%20oxidase%20activation%20and%20regulation%20by%20MAP%20kinases%20in%20human%20lung%20endothelial%20cells&rft.jtitle=American%20journal%20of%20physiology.%20Lung%20cellular%20and%20molecular%20physiology&rft.au=Parinandi,%20Narasimham%20L&rft.date=2003-01-01&rft.volume=284&rft.issue=1&rft.spage=26&rft.epage=L38&rft.pages=26-L38&rft.issn=1040-0605&rft.eissn=1522-1504&rft_id=info:doi/10.1152/ajplung.00123.2002&rft_dat=%3Cproquest_cross%3E72880684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72880684&rft_id=info:pmid/12388366&rfr_iscdi=true