An innovative intermittent hypoxia model for cell cultures allowing fast P o 2 oscillations with minimal gas consumption

Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2017-10, Vol.313 (4), p.C460-C468
Hauptverfasser: Minoves, Mélanie, Morand, Jessica, Perriot, Frédéric, Chatard, Morgane, Gonthier, Brigitte, Lemarié, Emeline, Menut, Jean-Baptiste, Polak, Jan, Pépin, Jean-Louis, Godin-Ribuot, Diane, Briançon-Marjollet, Anne
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C468
container_issue 4
container_start_page C460
container_title American Journal of Physiology: Cell Physiology
container_volume 313
creator Minoves, Mélanie
Morand, Jessica
Perriot, Frédéric
Chatard, Morgane
Gonthier, Brigitte
Lemarié, Emeline
Menut, Jean-Baptiste
Polak, Jan
Pépin, Jean-Louis
Godin-Ribuot, Diane
Briançon-Marjollet, Anne
description Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypoxia (IH) cycles relevant to OSA with limited gas consumption. With gas flows as low as 200 ml/min, our combination of plate holders with gas-permeable cultureware generates rapid normoxia-hypoxia cycles. Cycles alternating 1 min at 20% O 2 followed by 1 min at 2% O 2 resulted in Po 2 values ranging from 124 to 44 mmHg. Extending hypoxic and normoxic phases to 10 min allowed Po 2 variations from 120 to 25 mmHg. The volume of culture medium or the presence of cells only modestly affected the Po 2 variations. In contrast, the nadir of the hypoxia phase increased when measured at different heights above the membrane. We validated the physiological relevance of this model by showing that hypoxia inducible factor-1α expression was significantly increased by IH exposure in human aortic endothelial cells, murine breast carcinoma (4T1) cells as well as in a blood-brain barrier model (2.5-, 1.5-, and 6-fold increases, respectively). In conclusion, we have established a new device to perform rapid intermittent hypoxia cycles in cell cultures, with minimal gas consumption and the possibility to expose several culture dishes simultaneously. This device will allow functional studies of the consequences of IH and deciphering of the molecular biology of IH at the cellular level using oxygen cycles that are clinically relevant to OSA.
doi_str_mv 10.1152/ajpcell.00098.2017
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1152_ajpcell_00098_2017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1152_ajpcell_00098_2017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c927-b48561080bf876529741ccbd6b052606dc34a65adc75965c9c27f8646673f523</originalsourceid><addsrcrecordid>eNotkMtqwzAQRUVpoWnaH-hqfsCpHpZkL0PoIxBood0bWZYSBdkylvL6-9ptVnOZO9w7HISeCV4QwumL2vfaeL_AGJfFgmIib9BsNGhGuGC3aIaZYJkgObtHDzHux7ucinKGzssOXNeFo0ruaEaZzNC6lEyXYHfpw9kpaENjPNgwwNQB-uDTYTARlPfh5LotWBUTfEEACiFq5_0YFroIJ5d20LrOtcrDVkXQ4_bQ9pP7iO6s8tE8Xeccfb-9_qw-ss3n-3q13GS6pDKr84ILggtc20IKTkuZE63rRtSYU4FFo1muBFeNlrwUXJeaSluIXAjJLKdsjuh_qh5CjIOxVT-M3wyXiuBqIlddyVV_5KqJHPsFAZNlZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An innovative intermittent hypoxia model for cell cultures allowing fast P o 2 oscillations with minimal gas consumption</title><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Minoves, Mélanie ; Morand, Jessica ; Perriot, Frédéric ; Chatard, Morgane ; Gonthier, Brigitte ; Lemarié, Emeline ; Menut, Jean-Baptiste ; Polak, Jan ; Pépin, Jean-Louis ; Godin-Ribuot, Diane ; Briançon-Marjollet, Anne</creator><creatorcontrib>Minoves, Mélanie ; Morand, Jessica ; Perriot, Frédéric ; Chatard, Morgane ; Gonthier, Brigitte ; Lemarié, Emeline ; Menut, Jean-Baptiste ; Polak, Jan ; Pépin, Jean-Louis ; Godin-Ribuot, Diane ; Briançon-Marjollet, Anne</creatorcontrib><description>Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypoxia (IH) cycles relevant to OSA with limited gas consumption. With gas flows as low as 200 ml/min, our combination of plate holders with gas-permeable cultureware generates rapid normoxia-hypoxia cycles. Cycles alternating 1 min at 20% O 2 followed by 1 min at 2% O 2 resulted in Po 2 values ranging from 124 to 44 mmHg. Extending hypoxic and normoxic phases to 10 min allowed Po 2 variations from 120 to 25 mmHg. The volume of culture medium or the presence of cells only modestly affected the Po 2 variations. In contrast, the nadir of the hypoxia phase increased when measured at different heights above the membrane. We validated the physiological relevance of this model by showing that hypoxia inducible factor-1α expression was significantly increased by IH exposure in human aortic endothelial cells, murine breast carcinoma (4T1) cells as well as in a blood-brain barrier model (2.5-, 1.5-, and 6-fold increases, respectively). In conclusion, we have established a new device to perform rapid intermittent hypoxia cycles in cell cultures, with minimal gas consumption and the possibility to expose several culture dishes simultaneously. This device will allow functional studies of the consequences of IH and deciphering of the molecular biology of IH at the cellular level using oxygen cycles that are clinically relevant to OSA.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00098.2017</identifier><language>eng</language><ispartof>American Journal of Physiology: Cell Physiology, 2017-10, Vol.313 (4), p.C460-C468</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c927-b48561080bf876529741ccbd6b052606dc34a65adc75965c9c27f8646673f523</citedby><cites>FETCH-LOGICAL-c927-b48561080bf876529741ccbd6b052606dc34a65adc75965c9c27f8646673f523</cites><orcidid>0000-0001-7589-932X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids></links><search><creatorcontrib>Minoves, Mélanie</creatorcontrib><creatorcontrib>Morand, Jessica</creatorcontrib><creatorcontrib>Perriot, Frédéric</creatorcontrib><creatorcontrib>Chatard, Morgane</creatorcontrib><creatorcontrib>Gonthier, Brigitte</creatorcontrib><creatorcontrib>Lemarié, Emeline</creatorcontrib><creatorcontrib>Menut, Jean-Baptiste</creatorcontrib><creatorcontrib>Polak, Jan</creatorcontrib><creatorcontrib>Pépin, Jean-Louis</creatorcontrib><creatorcontrib>Godin-Ribuot, Diane</creatorcontrib><creatorcontrib>Briançon-Marjollet, Anne</creatorcontrib><title>An innovative intermittent hypoxia model for cell cultures allowing fast P o 2 oscillations with minimal gas consumption</title><title>American Journal of Physiology: Cell Physiology</title><description>Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypoxia (IH) cycles relevant to OSA with limited gas consumption. With gas flows as low as 200 ml/min, our combination of plate holders with gas-permeable cultureware generates rapid normoxia-hypoxia cycles. Cycles alternating 1 min at 20% O 2 followed by 1 min at 2% O 2 resulted in Po 2 values ranging from 124 to 44 mmHg. Extending hypoxic and normoxic phases to 10 min allowed Po 2 variations from 120 to 25 mmHg. The volume of culture medium or the presence of cells only modestly affected the Po 2 variations. In contrast, the nadir of the hypoxia phase increased when measured at different heights above the membrane. We validated the physiological relevance of this model by showing that hypoxia inducible factor-1α expression was significantly increased by IH exposure in human aortic endothelial cells, murine breast carcinoma (4T1) cells as well as in a blood-brain barrier model (2.5-, 1.5-, and 6-fold increases, respectively). In conclusion, we have established a new device to perform rapid intermittent hypoxia cycles in cell cultures, with minimal gas consumption and the possibility to expose several culture dishes simultaneously. This device will allow functional studies of the consequences of IH and deciphering of the molecular biology of IH at the cellular level using oxygen cycles that are clinically relevant to OSA.</description><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtqwzAQRUVpoWnaH-hqfsCpHpZkL0PoIxBood0bWZYSBdkylvL6-9ptVnOZO9w7HISeCV4QwumL2vfaeL_AGJfFgmIib9BsNGhGuGC3aIaZYJkgObtHDzHux7ucinKGzssOXNeFo0ruaEaZzNC6lEyXYHfpw9kpaENjPNgwwNQB-uDTYTARlPfh5LotWBUTfEEACiFq5_0YFroIJ5d20LrOtcrDVkXQ4_bQ9pP7iO6s8tE8Xeccfb-9_qw-ss3n-3q13GS6pDKr84ILggtc20IKTkuZE63rRtSYU4FFo1muBFeNlrwUXJeaSluIXAjJLKdsjuh_qh5CjIOxVT-M3wyXiuBqIlddyVV_5KqJHPsFAZNlZg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Minoves, Mélanie</creator><creator>Morand, Jessica</creator><creator>Perriot, Frédéric</creator><creator>Chatard, Morgane</creator><creator>Gonthier, Brigitte</creator><creator>Lemarié, Emeline</creator><creator>Menut, Jean-Baptiste</creator><creator>Polak, Jan</creator><creator>Pépin, Jean-Louis</creator><creator>Godin-Ribuot, Diane</creator><creator>Briançon-Marjollet, Anne</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7589-932X</orcidid></search><sort><creationdate>20171001</creationdate><title>An innovative intermittent hypoxia model for cell cultures allowing fast P o 2 oscillations with minimal gas consumption</title><author>Minoves, Mélanie ; Morand, Jessica ; Perriot, Frédéric ; Chatard, Morgane ; Gonthier, Brigitte ; Lemarié, Emeline ; Menut, Jean-Baptiste ; Polak, Jan ; Pépin, Jean-Louis ; Godin-Ribuot, Diane ; Briançon-Marjollet, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c927-b48561080bf876529741ccbd6b052606dc34a65adc75965c9c27f8646673f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minoves, Mélanie</creatorcontrib><creatorcontrib>Morand, Jessica</creatorcontrib><creatorcontrib>Perriot, Frédéric</creatorcontrib><creatorcontrib>Chatard, Morgane</creatorcontrib><creatorcontrib>Gonthier, Brigitte</creatorcontrib><creatorcontrib>Lemarié, Emeline</creatorcontrib><creatorcontrib>Menut, Jean-Baptiste</creatorcontrib><creatorcontrib>Polak, Jan</creatorcontrib><creatorcontrib>Pépin, Jean-Louis</creatorcontrib><creatorcontrib>Godin-Ribuot, Diane</creatorcontrib><creatorcontrib>Briançon-Marjollet, Anne</creatorcontrib><collection>CrossRef</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minoves, Mélanie</au><au>Morand, Jessica</au><au>Perriot, Frédéric</au><au>Chatard, Morgane</au><au>Gonthier, Brigitte</au><au>Lemarié, Emeline</au><au>Menut, Jean-Baptiste</au><au>Polak, Jan</au><au>Pépin, Jean-Louis</au><au>Godin-Ribuot, Diane</au><au>Briançon-Marjollet, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An innovative intermittent hypoxia model for cell cultures allowing fast P o 2 oscillations with minimal gas consumption</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>313</volume><issue>4</issue><spage>C460</spage><epage>C468</epage><pages>C460-C468</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><abstract>Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypoxia (IH) cycles relevant to OSA with limited gas consumption. With gas flows as low as 200 ml/min, our combination of plate holders with gas-permeable cultureware generates rapid normoxia-hypoxia cycles. Cycles alternating 1 min at 20% O 2 followed by 1 min at 2% O 2 resulted in Po 2 values ranging from 124 to 44 mmHg. Extending hypoxic and normoxic phases to 10 min allowed Po 2 variations from 120 to 25 mmHg. The volume of culture medium or the presence of cells only modestly affected the Po 2 variations. In contrast, the nadir of the hypoxia phase increased when measured at different heights above the membrane. We validated the physiological relevance of this model by showing that hypoxia inducible factor-1α expression was significantly increased by IH exposure in human aortic endothelial cells, murine breast carcinoma (4T1) cells as well as in a blood-brain barrier model (2.5-, 1.5-, and 6-fold increases, respectively). In conclusion, we have established a new device to perform rapid intermittent hypoxia cycles in cell cultures, with minimal gas consumption and the possibility to expose several culture dishes simultaneously. This device will allow functional studies of the consequences of IH and deciphering of the molecular biology of IH at the cellular level using oxygen cycles that are clinically relevant to OSA.</abstract><doi>10.1152/ajpcell.00098.2017</doi><orcidid>https://orcid.org/0000-0001-7589-932X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2017-10, Vol.313 (4), p.C460-C468
issn 0363-6143
1522-1563
language eng
recordid cdi_crossref_primary_10_1152_ajpcell_00098_2017
source American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title An innovative intermittent hypoxia model for cell cultures allowing fast P o 2 oscillations with minimal gas consumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20innovative%20intermittent%20hypoxia%20model%20for%20cell%20cultures%20allowing%20fast%20P%20o%202%20oscillations%20with%20minimal%20gas%20consumption&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Minoves,%20M%C3%A9lanie&rft.date=2017-10-01&rft.volume=313&rft.issue=4&rft.spage=C460&rft.epage=C468&rft.pages=C460-C468&rft.issn=0363-6143&rft.eissn=1522-1563&rft_id=info:doi/10.1152/ajpcell.00098.2017&rft_dat=%3Ccrossref%3E10_1152_ajpcell_00098_2017%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true