Enhanced Transport in Electrochemical Reactors Using Advanced 3D Printed Electrodes

Water electrolyzers employ porous architectures to facilitate the transport of mass and charge. Ensuring effective transport can improve energy efficiency and unlock stable operation at higher current densities. In order to realize these improvements, however, research needs to show the relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2023-12, Vol.MA2023-02 (42), p.2108-2108
Hauptverfasser: Davis, Jonathan T., Seung, Kansas, Hammons, Joshua Aaron, Ferron, Thomas J, Chandrasekaran, Swetha, Baker, Sarah, Duoss, Eric B, Kang, Shinyoung, Lin, Tiras Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2108
container_issue 42
container_start_page 2108
container_title Meeting abstracts (Electrochemical Society)
container_volume MA2023-02
creator Davis, Jonathan T.
Seung, Kansas
Hammons, Joshua Aaron
Ferron, Thomas J
Chandrasekaran, Swetha
Baker, Sarah
Duoss, Eric B
Kang, Shinyoung
Lin, Tiras Y
description Water electrolyzers employ porous architectures to facilitate the transport of mass and charge. Ensuring effective transport can improve energy efficiency and unlock stable operation at higher current densities. In order to realize these improvements, however, research needs to show the relationship between pore structure and performance. Advances in 3D printing research have enabled the manufacture of functional, electrically conductive porous materials at ever finer length scales and larger build areas. Using electrodes manufactured via projection microstereolithography (PuSL), we first show how this structural control can lead to computationally optimized electrodes which minimize the total power losses of a model single phase reaction. The physics of gas bubble transport in water electrolyzers is more complicated, however. At higher operating current densities, entrained gas bubbles in the triple phase boundary can be a source of degradation by occupying active sites and impeding the flow of ions between electrodes. Using structured pores, controlled surface tension boundaries offer an unprecedented degree of control over gas bubble transport. Integrating these ordered structures into water electrolyzers has the potential to improve the stability of devices at high current densities by guiding bubbles away from the reaction zone and into designed outlets.
doi_str_mv 10.1149/MA2023-02422108mtgabs
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_1149_MA2023_02422108mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88s-cb481d98f11e2f96fe0ab36237ad48d5b67d57090e3b578a240d10f85f09f7143</originalsourceid><addsrcrecordid>eNqFkMtKw0AYhQdRsFYfQZgXiP7_XJrJMtRqhYqicR0mc2lT0kmZiYJvbyVFcOXqnM13OHyEXCPcIIri9qlkwHgGTDCGoHbDWjfphEwYSswYcHn62wU_JxcpbQG4UoxNyNsibHQwztIq6pD2fRxoG-iic2aIvdm4XWt0R1-dNkMfE31PbVjT0n6OEL-jL7ENw6EeEevSJTnzukvu6phTUt0vqvkyWz0_PM7LVWaUSplphEJbKI_omC9m3oFu-IzxXFuhrGxmuZU5FOB4I3OlmQCL4JX0UPgcBZ8SOc6a2KcUna_3sd3p-FUj1D9i6lFM_VfMgcORa_t9ve0_Yjic_If5BiwlZ8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Transport in Electrochemical Reactors Using Advanced 3D Printed Electrodes</title><source>Institute of Physics Open Access Journal Titles</source><creator>Davis, Jonathan T. ; Seung, Kansas ; Hammons, Joshua Aaron ; Ferron, Thomas J ; Chandrasekaran, Swetha ; Baker, Sarah ; Duoss, Eric B ; Kang, Shinyoung ; Lin, Tiras Y</creator><creatorcontrib>Davis, Jonathan T. ; Seung, Kansas ; Hammons, Joshua Aaron ; Ferron, Thomas J ; Chandrasekaran, Swetha ; Baker, Sarah ; Duoss, Eric B ; Kang, Shinyoung ; Lin, Tiras Y</creatorcontrib><description>Water electrolyzers employ porous architectures to facilitate the transport of mass and charge. Ensuring effective transport can improve energy efficiency and unlock stable operation at higher current densities. In order to realize these improvements, however, research needs to show the relationship between pore structure and performance. Advances in 3D printing research have enabled the manufacture of functional, electrically conductive porous materials at ever finer length scales and larger build areas. Using electrodes manufactured via projection microstereolithography (PuSL), we first show how this structural control can lead to computationally optimized electrodes which minimize the total power losses of a model single phase reaction. The physics of gas bubble transport in water electrolyzers is more complicated, however. At higher operating current densities, entrained gas bubbles in the triple phase boundary can be a source of degradation by occupying active sites and impeding the flow of ions between electrodes. Using structured pores, controlled surface tension boundaries offer an unprecedented degree of control over gas bubble transport. Integrating these ordered structures into water electrolyzers has the potential to improve the stability of devices at high current densities by guiding bubbles away from the reaction zone and into designed outlets.</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2023-02422108mtgabs</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Meeting abstracts (Electrochemical Society), 2023-12, Vol.MA2023-02 (42), p.2108-2108</ispartof><rights>2023 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3377-9933 ; 0000-0001-8573-9354 ; 0000-0002-2242-2648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/MA2023-02422108mtgabs/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1149/MA2023-02422108mtgabs$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Davis, Jonathan T.</creatorcontrib><creatorcontrib>Seung, Kansas</creatorcontrib><creatorcontrib>Hammons, Joshua Aaron</creatorcontrib><creatorcontrib>Ferron, Thomas J</creatorcontrib><creatorcontrib>Chandrasekaran, Swetha</creatorcontrib><creatorcontrib>Baker, Sarah</creatorcontrib><creatorcontrib>Duoss, Eric B</creatorcontrib><creatorcontrib>Kang, Shinyoung</creatorcontrib><creatorcontrib>Lin, Tiras Y</creatorcontrib><title>Enhanced Transport in Electrochemical Reactors Using Advanced 3D Printed Electrodes</title><title>Meeting abstracts (Electrochemical Society)</title><addtitle>Meet. Abstr</addtitle><description>Water electrolyzers employ porous architectures to facilitate the transport of mass and charge. Ensuring effective transport can improve energy efficiency and unlock stable operation at higher current densities. In order to realize these improvements, however, research needs to show the relationship between pore structure and performance. Advances in 3D printing research have enabled the manufacture of functional, electrically conductive porous materials at ever finer length scales and larger build areas. Using electrodes manufactured via projection microstereolithography (PuSL), we first show how this structural control can lead to computationally optimized electrodes which minimize the total power losses of a model single phase reaction. The physics of gas bubble transport in water electrolyzers is more complicated, however. At higher operating current densities, entrained gas bubbles in the triple phase boundary can be a source of degradation by occupying active sites and impeding the flow of ions between electrodes. Using structured pores, controlled surface tension boundaries offer an unprecedented degree of control over gas bubble transport. Integrating these ordered structures into water electrolyzers has the potential to improve the stability of devices at high current densities by guiding bubbles away from the reaction zone and into designed outlets.</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AYhQdRsFYfQZgXiP7_XJrJMtRqhYqicR0mc2lT0kmZiYJvbyVFcOXqnM13OHyEXCPcIIri9qlkwHgGTDCGoHbDWjfphEwYSswYcHn62wU_JxcpbQG4UoxNyNsibHQwztIq6pD2fRxoG-iic2aIvdm4XWt0R1-dNkMfE31PbVjT0n6OEL-jL7ENw6EeEevSJTnzukvu6phTUt0vqvkyWz0_PM7LVWaUSplphEJbKI_omC9m3oFu-IzxXFuhrGxmuZU5FOB4I3OlmQCL4JX0UPgcBZ8SOc6a2KcUna_3sd3p-FUj1D9i6lFM_VfMgcORa_t9ve0_Yjic_If5BiwlZ8w</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Davis, Jonathan T.</creator><creator>Seung, Kansas</creator><creator>Hammons, Joshua Aaron</creator><creator>Ferron, Thomas J</creator><creator>Chandrasekaran, Swetha</creator><creator>Baker, Sarah</creator><creator>Duoss, Eric B</creator><creator>Kang, Shinyoung</creator><creator>Lin, Tiras Y</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3377-9933</orcidid><orcidid>https://orcid.org/0000-0001-8573-9354</orcidid><orcidid>https://orcid.org/0000-0002-2242-2648</orcidid></search><sort><creationdate>20231222</creationdate><title>Enhanced Transport in Electrochemical Reactors Using Advanced 3D Printed Electrodes</title><author>Davis, Jonathan T. ; Seung, Kansas ; Hammons, Joshua Aaron ; Ferron, Thomas J ; Chandrasekaran, Swetha ; Baker, Sarah ; Duoss, Eric B ; Kang, Shinyoung ; Lin, Tiras Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88s-cb481d98f11e2f96fe0ab36237ad48d5b67d57090e3b578a240d10f85f09f7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Davis, Jonathan T.</creatorcontrib><creatorcontrib>Seung, Kansas</creatorcontrib><creatorcontrib>Hammons, Joshua Aaron</creatorcontrib><creatorcontrib>Ferron, Thomas J</creatorcontrib><creatorcontrib>Chandrasekaran, Swetha</creatorcontrib><creatorcontrib>Baker, Sarah</creatorcontrib><creatorcontrib>Duoss, Eric B</creatorcontrib><creatorcontrib>Kang, Shinyoung</creatorcontrib><creatorcontrib>Lin, Tiras Y</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Davis, Jonathan T.</au><au>Seung, Kansas</au><au>Hammons, Joshua Aaron</au><au>Ferron, Thomas J</au><au>Chandrasekaran, Swetha</au><au>Baker, Sarah</au><au>Duoss, Eric B</au><au>Kang, Shinyoung</au><au>Lin, Tiras Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Transport in Electrochemical Reactors Using Advanced 3D Printed Electrodes</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><addtitle>Meet. Abstr</addtitle><date>2023-12-22</date><risdate>2023</risdate><volume>MA2023-02</volume><issue>42</issue><spage>2108</spage><epage>2108</epage><pages>2108-2108</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>Water electrolyzers employ porous architectures to facilitate the transport of mass and charge. Ensuring effective transport can improve energy efficiency and unlock stable operation at higher current densities. In order to realize these improvements, however, research needs to show the relationship between pore structure and performance. Advances in 3D printing research have enabled the manufacture of functional, electrically conductive porous materials at ever finer length scales and larger build areas. Using electrodes manufactured via projection microstereolithography (PuSL), we first show how this structural control can lead to computationally optimized electrodes which minimize the total power losses of a model single phase reaction. The physics of gas bubble transport in water electrolyzers is more complicated, however. At higher operating current densities, entrained gas bubbles in the triple phase boundary can be a source of degradation by occupying active sites and impeding the flow of ions between electrodes. Using structured pores, controlled surface tension boundaries offer an unprecedented degree of control over gas bubble transport. Integrating these ordered structures into water electrolyzers has the potential to improve the stability of devices at high current densities by guiding bubbles away from the reaction zone and into designed outlets.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/MA2023-02422108mtgabs</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3377-9933</orcidid><orcidid>https://orcid.org/0000-0001-8573-9354</orcidid><orcidid>https://orcid.org/0000-0002-2242-2648</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2043
ispartof Meeting abstracts (Electrochemical Society), 2023-12, Vol.MA2023-02 (42), p.2108-2108
issn 2151-2043
2151-2035
language eng
recordid cdi_crossref_primary_10_1149_MA2023_02422108mtgabs
source Institute of Physics Open Access Journal Titles
title Enhanced Transport in Electrochemical Reactors Using Advanced 3D Printed Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Transport%20in%20Electrochemical%20Reactors%20Using%20Advanced%203D%20Printed%20Electrodes&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Davis,%20Jonathan%20T.&rft.date=2023-12-22&rft.volume=MA2023-02&rft.issue=42&rft.spage=2108&rft.epage=2108&rft.pages=2108-2108&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2023-02422108mtgabs&rft_dat=%3Ciop_O3W%3E2108%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true