Glass Electrolyte Infiltrated Cathode in an All Solid State Lithium Cell

Ion conducting glasses have been known for more than half a century, but their effective application in batteries is limited. Johnson Energy Storage is demonstrating a novel all solid state lithium battery construction which utilizes a lithium ion conducting glass to transport ions from deep within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2023-08, Vol.MA2023-01 (6), p.1067-1067
Hauptverfasser: Rauch, William, Allie, Lazbourne, Grant, Adrian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 6
container_start_page 1067
container_title Meeting abstracts (Electrochemical Society)
container_volume MA2023-01
creator Rauch, William
Allie, Lazbourne
Grant, Adrian
description Ion conducting glasses have been known for more than half a century, but their effective application in batteries is limited. Johnson Energy Storage is demonstrating a novel all solid state lithium battery construction which utilizes a lithium ion conducting glass to transport ions from deep within a structured cathode network. The unique application of the glass electrolyte is dependent upon a networked cathode structure, infiltration of the glass into the cathode and developing a glass with both sufficient ionic transport and a large voltage stability window. The advantages provided include continuity of transport channels and large contact surfaces between the active cathode material and the glass electrolyte. Both are required for effective transport and low impedance. Cells are shown with the potential for long cycle life and stability cycling from 3.0-4.3 volts utilizing a metallic lithium anode.
doi_str_mv 10.1149/MA2023-0161067mtgabs
format Article
fullrecord <record><control><sourceid>iop_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_1149_MA2023_0161067mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c86s-db9a287388745fdb1406ec1b2d81099f1a5bdf439ac864d7c0e1b3331804764a3</originalsourceid><addsrcrecordid>eNp9kM9OwzAMhyMEEmPwBhzyAgU7Sf8dp2psk4o4bPcqbRKWKW2nJDvs7SkqQuLCyZb8-2zrI-QZ4QVRlK_vKwaMJ4AZQpb38VO24YYsGKaYMODp7W8v-D15COEEwIuCsQXZbpwMga6d7qIf3TVquhuMddHLqBWtZDyOSlM7UDnQlXN0Pzqr6D5OY1rbeLSXnlbauUdyZ6QL-umnLsnhbX2otkn9sdlVqzrpiiwkqi0lK_LpeC5So1oUkOkOW6YKhLI0KNNWGcFLOcWFyjvQ2HLOsQCRZ0LyJRHz2s6PIXhtmrO3vfTXBqH5ltHMMpo_MiYMZsyO5-Y0Xvww_fg_8gV2nGKf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glass Electrolyte Infiltrated Cathode in an All Solid State Lithium Cell</title><source>IOP Publishing Free Content</source><creator>Rauch, William ; Allie, Lazbourne ; Grant, Adrian</creator><creatorcontrib>Rauch, William ; Allie, Lazbourne ; Grant, Adrian</creatorcontrib><description>Ion conducting glasses have been known for more than half a century, but their effective application in batteries is limited. Johnson Energy Storage is demonstrating a novel all solid state lithium battery construction which utilizes a lithium ion conducting glass to transport ions from deep within a structured cathode network. The unique application of the glass electrolyte is dependent upon a networked cathode structure, infiltration of the glass into the cathode and developing a glass with both sufficient ionic transport and a large voltage stability window. The advantages provided include continuity of transport channels and large contact surfaces between the active cathode material and the glass electrolyte. Both are required for effective transport and low impedance. Cells are shown with the potential for long cycle life and stability cycling from 3.0-4.3 volts utilizing a metallic lithium anode.</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2023-0161067mtgabs</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>Meeting abstracts (Electrochemical Society), 2023-08, Vol.MA2023-01 (6), p.1067-1067</ispartof><rights>2023 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/MA2023-0161067mtgabs/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38869,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1149/MA2023-0161067mtgabs$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Rauch, William</creatorcontrib><creatorcontrib>Allie, Lazbourne</creatorcontrib><creatorcontrib>Grant, Adrian</creatorcontrib><title>Glass Electrolyte Infiltrated Cathode in an All Solid State Lithium Cell</title><title>Meeting abstracts (Electrochemical Society)</title><addtitle>Meet. Abstr</addtitle><description>Ion conducting glasses have been known for more than half a century, but their effective application in batteries is limited. Johnson Energy Storage is demonstrating a novel all solid state lithium battery construction which utilizes a lithium ion conducting glass to transport ions from deep within a structured cathode network. The unique application of the glass electrolyte is dependent upon a networked cathode structure, infiltration of the glass into the cathode and developing a glass with both sufficient ionic transport and a large voltage stability window. The advantages provided include continuity of transport channels and large contact surfaces between the active cathode material and the glass electrolyte. Both are required for effective transport and low impedance. Cells are shown with the potential for long cycle life and stability cycling from 3.0-4.3 volts utilizing a metallic lithium anode.</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMhyMEEmPwBhzyAgU7Sf8dp2psk4o4bPcqbRKWKW2nJDvs7SkqQuLCyZb8-2zrI-QZ4QVRlK_vKwaMJ4AZQpb38VO24YYsGKaYMODp7W8v-D15COEEwIuCsQXZbpwMga6d7qIf3TVquhuMddHLqBWtZDyOSlM7UDnQlXN0Pzqr6D5OY1rbeLSXnlbauUdyZ6QL-umnLsnhbX2otkn9sdlVqzrpiiwkqi0lK_LpeC5So1oUkOkOW6YKhLI0KNNWGcFLOcWFyjvQ2HLOsQCRZ0LyJRHz2s6PIXhtmrO3vfTXBqH5ltHMMpo_MiYMZsyO5-Y0Xvww_fg_8gV2nGKf</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Rauch, William</creator><creator>Allie, Lazbourne</creator><creator>Grant, Adrian</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230828</creationdate><title>Glass Electrolyte Infiltrated Cathode in an All Solid State Lithium Cell</title><author>Rauch, William ; Allie, Lazbourne ; Grant, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c86s-db9a287388745fdb1406ec1b2d81099f1a5bdf439ac864d7c0e1b3331804764a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rauch, William</creatorcontrib><creatorcontrib>Allie, Lazbourne</creatorcontrib><creatorcontrib>Grant, Adrian</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rauch, William</au><au>Allie, Lazbourne</au><au>Grant, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass Electrolyte Infiltrated Cathode in an All Solid State Lithium Cell</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><addtitle>Meet. Abstr</addtitle><date>2023-08-28</date><risdate>2023</risdate><volume>MA2023-01</volume><issue>6</issue><spage>1067</spage><epage>1067</epage><pages>1067-1067</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>Ion conducting glasses have been known for more than half a century, but their effective application in batteries is limited. Johnson Energy Storage is demonstrating a novel all solid state lithium battery construction which utilizes a lithium ion conducting glass to transport ions from deep within a structured cathode network. The unique application of the glass electrolyte is dependent upon a networked cathode structure, infiltration of the glass into the cathode and developing a glass with both sufficient ionic transport and a large voltage stability window. The advantages provided include continuity of transport channels and large contact surfaces between the active cathode material and the glass electrolyte. Both are required for effective transport and low impedance. Cells are shown with the potential for long cycle life and stability cycling from 3.0-4.3 volts utilizing a metallic lithium anode.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/MA2023-0161067mtgabs</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2043
ispartof Meeting abstracts (Electrochemical Society), 2023-08, Vol.MA2023-01 (6), p.1067-1067
issn 2151-2043
2151-2035
language eng
recordid cdi_crossref_primary_10_1149_MA2023_0161067mtgabs
source IOP Publishing Free Content
title Glass Electrolyte Infiltrated Cathode in an All Solid State Lithium Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass%20Electrolyte%20Infiltrated%20Cathode%20in%20an%20All%20Solid%20State%20Lithium%20Cell&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Rauch,%20William&rft.date=2023-08-28&rft.volume=MA2023-01&rft.issue=6&rft.spage=1067&rft.epage=1067&rft.pages=1067-1067&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2023-0161067mtgabs&rft_dat=%3Ciop_O3W%3E1067%3C/iop_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true