(Invited) Modulation of the Fermi Level in Single-Walled Carbon Nanotubes By Chromophore Encapsulation

The one-dimensional structure of single-walled carbon nanotubes renders these materials ideal for optoelectronic applications as they can transport electrons or holes with quasi-ballistic features and as they display optical absorption and near-infrared emission (thanks to van Hove singularities). N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2020-05, Vol.MA2020-01 (8), p.754-754
Hauptverfasser: Chambard, Romain, Izard, Nicolas, Aznar, Raymond, Jousselme, Bruno, Campidelli, Stephane, Sato, Yuta, Suenaga, Kazu, Lauret, Jean-Sébastien, Bantignies, Jean-Louis, Alvarez, Laurent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 8
container_start_page 754
container_title Meeting abstracts (Electrochemical Society)
container_volume MA2020-01
creator Chambard, Romain
Izard, Nicolas
Aznar, Raymond
Jousselme, Bruno
Campidelli, Stephane
Sato, Yuta
Suenaga, Kazu
Lauret, Jean-Sébastien
Bantignies, Jean-Louis
Alvarez, Laurent
description The one-dimensional structure of single-walled carbon nanotubes renders these materials ideal for optoelectronic applications as they can transport electrons or holes with quasi-ballistic features and as they display optical absorption and near-infrared emission (thanks to van Hove singularities). Nevertheless, functionalities can to be added to nanotube to both improve and control the physical properties. To this aim, chromophore encapsulation into host single-walled carbon nanotubes allows to create hybrid nano-systems with tunable opto-electronic properties. Up to now, we have been confining different kinds of molecules, 1-4 either absorbing in the blue/green range, being electron donor (quaterthiophene derivatives (4T) and tetramethyl-paraphenylenediamine (TMPD)) or electron acceptor (tetracyanoquinodimethane (TCNQ)), or absorbing in the red visible range (phthalocyanine (MPc)). In this study, we investigate, at both the macroscopic and the individual scales, the electronic and the optical properties of our hybrid systems by means of Raman and photoluminescence spectroscopies. From Raman measurements, a significant charge transfer from the confined dye to the nanotube is evidenced. Experiments also suggest a photo-activated electron transfer for small diameter (~9 Å) semiconducting and metallic tubes. The main relevant parameters that govern the charge transfer are the nanotube diameter and the electronic properties of both the nanotube (metallic or semiconducting) and the chromophores (electron donor or acceptor). Photoluminescence experiments clearly demonstrate changes on the emission properties after encapsulation. The intensities can be increased or reduced depending on the nature of the confined chromophores (electron donor or acceptor). These behaviors are consistent with a charge transfer. Therefore, Raman and photoluminescence experiments strongly suggest charge transfer between the confined molecules and the nanotubes, leading to a Fermi level shift which governs the radiative de-excitation efficiency and the electron-phonon coupling. References [1] L. Alvarez et al, J. Phys. Chem. C, 119, (2015), pp. 5203−5210 [2] Y. Almadori et al, J. Phys. Chem. C; 118, (2014), pp. 19462−19468 [3] A. Belhboub et al, J. Phys. Chem. C; 120, (2016), pp. 28802−28807 [4] Y. Almadori et al, Carbon 149, (2019), pp. 772-780
doi_str_mv 10.1149/MA2020-018754mtgabs
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_MA2020_018754mtgabs</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_MA2020_018754mtgabs</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1149_MA2020_018754mtgabs3</originalsourceid><addsrcrecordid>eNqdj01rAjEURYNYUFt_gZu3bBdj8zGD02U7KAraTQtdhozzxolkkiGJgv--loq4dnXv4p4Lh5AJo1PG0rfXzTunnCaU5bMsbeNOlaFHhpxlLOFUZP1rT8WAjELYUyrynPMhqZ9X9qgjVi-wcdXBqKidBVdDbBAW6FsNazyiAW3hS9udweRHGYMVFMqX5-mnsi4eSgzwcYKi8a51XeM8wtxuVRcuj0_koVYm4PiSj0Qs5t_FMtl6F4LHWnZet8qfJKPyT0n-K8lbJXEf9QssbFgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>(Invited) Modulation of the Fermi Level in Single-Walled Carbon Nanotubes By Chromophore Encapsulation</title><source>Institute of Physics Open Access Journal Titles</source><source>Free Full-Text Journals in Chemistry</source><creator>Chambard, Romain ; Izard, Nicolas ; Aznar, Raymond ; Jousselme, Bruno ; Campidelli, Stephane ; Sato, Yuta ; Suenaga, Kazu ; Lauret, Jean-Sébastien ; Bantignies, Jean-Louis ; Alvarez, Laurent</creator><creatorcontrib>Chambard, Romain ; Izard, Nicolas ; Aznar, Raymond ; Jousselme, Bruno ; Campidelli, Stephane ; Sato, Yuta ; Suenaga, Kazu ; Lauret, Jean-Sébastien ; Bantignies, Jean-Louis ; Alvarez, Laurent</creatorcontrib><description>The one-dimensional structure of single-walled carbon nanotubes renders these materials ideal for optoelectronic applications as they can transport electrons or holes with quasi-ballistic features and as they display optical absorption and near-infrared emission (thanks to van Hove singularities). Nevertheless, functionalities can to be added to nanotube to both improve and control the physical properties. To this aim, chromophore encapsulation into host single-walled carbon nanotubes allows to create hybrid nano-systems with tunable opto-electronic properties. Up to now, we have been confining different kinds of molecules, 1-4 either absorbing in the blue/green range, being electron donor (quaterthiophene derivatives (4T) and tetramethyl-paraphenylenediamine (TMPD)) or electron acceptor (tetracyanoquinodimethane (TCNQ)), or absorbing in the red visible range (phthalocyanine (MPc)). In this study, we investigate, at both the macroscopic and the individual scales, the electronic and the optical properties of our hybrid systems by means of Raman and photoluminescence spectroscopies. From Raman measurements, a significant charge transfer from the confined dye to the nanotube is evidenced. Experiments also suggest a photo-activated electron transfer for small diameter (~9 Å) semiconducting and metallic tubes. The main relevant parameters that govern the charge transfer are the nanotube diameter and the electronic properties of both the nanotube (metallic or semiconducting) and the chromophores (electron donor or acceptor). Photoluminescence experiments clearly demonstrate changes on the emission properties after encapsulation. The intensities can be increased or reduced depending on the nature of the confined chromophores (electron donor or acceptor). These behaviors are consistent with a charge transfer. Therefore, Raman and photoluminescence experiments strongly suggest charge transfer between the confined molecules and the nanotubes, leading to a Fermi level shift which governs the radiative de-excitation efficiency and the electron-phonon coupling. References [1] L. Alvarez et al, J. Phys. Chem. C, 119, (2015), pp. 5203−5210 [2] Y. Almadori et al, J. Phys. Chem. C; 118, (2014), pp. 19462−19468 [3] A. Belhboub et al, J. Phys. Chem. C; 120, (2016), pp. 28802−28807 [4] Y. Almadori et al, Carbon 149, (2019), pp. 772-780</description><identifier>ISSN: 2151-2043</identifier><identifier>EISSN: 2151-2035</identifier><identifier>DOI: 10.1149/MA2020-018754mtgabs</identifier><language>eng</language><ispartof>Meeting abstracts (Electrochemical Society), 2020-05, Vol.MA2020-01 (8), p.754-754</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Chambard, Romain</creatorcontrib><creatorcontrib>Izard, Nicolas</creatorcontrib><creatorcontrib>Aznar, Raymond</creatorcontrib><creatorcontrib>Jousselme, Bruno</creatorcontrib><creatorcontrib>Campidelli, Stephane</creatorcontrib><creatorcontrib>Sato, Yuta</creatorcontrib><creatorcontrib>Suenaga, Kazu</creatorcontrib><creatorcontrib>Lauret, Jean-Sébastien</creatorcontrib><creatorcontrib>Bantignies, Jean-Louis</creatorcontrib><creatorcontrib>Alvarez, Laurent</creatorcontrib><title>(Invited) Modulation of the Fermi Level in Single-Walled Carbon Nanotubes By Chromophore Encapsulation</title><title>Meeting abstracts (Electrochemical Society)</title><description>The one-dimensional structure of single-walled carbon nanotubes renders these materials ideal for optoelectronic applications as they can transport electrons or holes with quasi-ballistic features and as they display optical absorption and near-infrared emission (thanks to van Hove singularities). Nevertheless, functionalities can to be added to nanotube to both improve and control the physical properties. To this aim, chromophore encapsulation into host single-walled carbon nanotubes allows to create hybrid nano-systems with tunable opto-electronic properties. Up to now, we have been confining different kinds of molecules, 1-4 either absorbing in the blue/green range, being electron donor (quaterthiophene derivatives (4T) and tetramethyl-paraphenylenediamine (TMPD)) or electron acceptor (tetracyanoquinodimethane (TCNQ)), or absorbing in the red visible range (phthalocyanine (MPc)). In this study, we investigate, at both the macroscopic and the individual scales, the electronic and the optical properties of our hybrid systems by means of Raman and photoluminescence spectroscopies. From Raman measurements, a significant charge transfer from the confined dye to the nanotube is evidenced. Experiments also suggest a photo-activated electron transfer for small diameter (~9 Å) semiconducting and metallic tubes. The main relevant parameters that govern the charge transfer are the nanotube diameter and the electronic properties of both the nanotube (metallic or semiconducting) and the chromophores (electron donor or acceptor). Photoluminescence experiments clearly demonstrate changes on the emission properties after encapsulation. The intensities can be increased or reduced depending on the nature of the confined chromophores (electron donor or acceptor). These behaviors are consistent with a charge transfer. Therefore, Raman and photoluminescence experiments strongly suggest charge transfer between the confined molecules and the nanotubes, leading to a Fermi level shift which governs the radiative de-excitation efficiency and the electron-phonon coupling. References [1] L. Alvarez et al, J. Phys. Chem. C, 119, (2015), pp. 5203−5210 [2] Y. Almadori et al, J. Phys. Chem. C; 118, (2014), pp. 19462−19468 [3] A. Belhboub et al, J. Phys. Chem. C; 120, (2016), pp. 28802−28807 [4] Y. Almadori et al, Carbon 149, (2019), pp. 772-780</description><issn>2151-2043</issn><issn>2151-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdj01rAjEURYNYUFt_gZu3bBdj8zGD02U7KAraTQtdhozzxolkkiGJgv--loq4dnXv4p4Lh5AJo1PG0rfXzTunnCaU5bMsbeNOlaFHhpxlLOFUZP1rT8WAjELYUyrynPMhqZ9X9qgjVi-wcdXBqKidBVdDbBAW6FsNazyiAW3hS9udweRHGYMVFMqX5-mnsi4eSgzwcYKi8a51XeM8wtxuVRcuj0_koVYm4PiSj0Qs5t_FMtl6F4LHWnZet8qfJKPyT0n-K8lbJXEf9QssbFgQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Chambard, Romain</creator><creator>Izard, Nicolas</creator><creator>Aznar, Raymond</creator><creator>Jousselme, Bruno</creator><creator>Campidelli, Stephane</creator><creator>Sato, Yuta</creator><creator>Suenaga, Kazu</creator><creator>Lauret, Jean-Sébastien</creator><creator>Bantignies, Jean-Louis</creator><creator>Alvarez, Laurent</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>(Invited) Modulation of the Fermi Level in Single-Walled Carbon Nanotubes By Chromophore Encapsulation</title><author>Chambard, Romain ; Izard, Nicolas ; Aznar, Raymond ; Jousselme, Bruno ; Campidelli, Stephane ; Sato, Yuta ; Suenaga, Kazu ; Lauret, Jean-Sébastien ; Bantignies, Jean-Louis ; Alvarez, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1149_MA2020_018754mtgabs3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chambard, Romain</creatorcontrib><creatorcontrib>Izard, Nicolas</creatorcontrib><creatorcontrib>Aznar, Raymond</creatorcontrib><creatorcontrib>Jousselme, Bruno</creatorcontrib><creatorcontrib>Campidelli, Stephane</creatorcontrib><creatorcontrib>Sato, Yuta</creatorcontrib><creatorcontrib>Suenaga, Kazu</creatorcontrib><creatorcontrib>Lauret, Jean-Sébastien</creatorcontrib><creatorcontrib>Bantignies, Jean-Louis</creatorcontrib><creatorcontrib>Alvarez, Laurent</creatorcontrib><collection>CrossRef</collection><jtitle>Meeting abstracts (Electrochemical Society)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chambard, Romain</au><au>Izard, Nicolas</au><au>Aznar, Raymond</au><au>Jousselme, Bruno</au><au>Campidelli, Stephane</au><au>Sato, Yuta</au><au>Suenaga, Kazu</au><au>Lauret, Jean-Sébastien</au><au>Bantignies, Jean-Louis</au><au>Alvarez, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(Invited) Modulation of the Fermi Level in Single-Walled Carbon Nanotubes By Chromophore Encapsulation</atitle><jtitle>Meeting abstracts (Electrochemical Society)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>MA2020-01</volume><issue>8</issue><spage>754</spage><epage>754</epage><pages>754-754</pages><issn>2151-2043</issn><eissn>2151-2035</eissn><abstract>The one-dimensional structure of single-walled carbon nanotubes renders these materials ideal for optoelectronic applications as they can transport electrons or holes with quasi-ballistic features and as they display optical absorption and near-infrared emission (thanks to van Hove singularities). Nevertheless, functionalities can to be added to nanotube to both improve and control the physical properties. To this aim, chromophore encapsulation into host single-walled carbon nanotubes allows to create hybrid nano-systems with tunable opto-electronic properties. Up to now, we have been confining different kinds of molecules, 1-4 either absorbing in the blue/green range, being electron donor (quaterthiophene derivatives (4T) and tetramethyl-paraphenylenediamine (TMPD)) or electron acceptor (tetracyanoquinodimethane (TCNQ)), or absorbing in the red visible range (phthalocyanine (MPc)). In this study, we investigate, at both the macroscopic and the individual scales, the electronic and the optical properties of our hybrid systems by means of Raman and photoluminescence spectroscopies. From Raman measurements, a significant charge transfer from the confined dye to the nanotube is evidenced. Experiments also suggest a photo-activated electron transfer for small diameter (~9 Å) semiconducting and metallic tubes. The main relevant parameters that govern the charge transfer are the nanotube diameter and the electronic properties of both the nanotube (metallic or semiconducting) and the chromophores (electron donor or acceptor). Photoluminescence experiments clearly demonstrate changes on the emission properties after encapsulation. The intensities can be increased or reduced depending on the nature of the confined chromophores (electron donor or acceptor). These behaviors are consistent with a charge transfer. Therefore, Raman and photoluminescence experiments strongly suggest charge transfer between the confined molecules and the nanotubes, leading to a Fermi level shift which governs the radiative de-excitation efficiency and the electron-phonon coupling. References [1] L. Alvarez et al, J. Phys. Chem. C, 119, (2015), pp. 5203−5210 [2] Y. Almadori et al, J. Phys. Chem. C; 118, (2014), pp. 19462−19468 [3] A. Belhboub et al, J. Phys. Chem. C; 120, (2016), pp. 28802−28807 [4] Y. Almadori et al, Carbon 149, (2019), pp. 772-780</abstract><doi>10.1149/MA2020-018754mtgabs</doi></addata></record>
fulltext fulltext
identifier ISSN: 2151-2043
ispartof Meeting abstracts (Electrochemical Society), 2020-05, Vol.MA2020-01 (8), p.754-754
issn 2151-2043
2151-2035
language eng
recordid cdi_crossref_primary_10_1149_MA2020_018754mtgabs
source Institute of Physics Open Access Journal Titles; Free Full-Text Journals in Chemistry
title (Invited) Modulation of the Fermi Level in Single-Walled Carbon Nanotubes By Chromophore Encapsulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(Invited)%20Modulation%20of%20the%20Fermi%20Level%20in%20Single-Walled%20Carbon%20Nanotubes%20By%20Chromophore%20Encapsulation&rft.jtitle=Meeting%20abstracts%20(Electrochemical%20Society)&rft.au=Chambard,%20Romain&rft.date=2020-05-01&rft.volume=MA2020-01&rft.issue=8&rft.spage=754&rft.epage=754&rft.pages=754-754&rft.issn=2151-2043&rft.eissn=2151-2035&rft_id=info:doi/10.1149/MA2020-018754mtgabs&rft_dat=%3Ccrossref%3E10_1149_MA2020_018754mtgabs%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true