Transferable Memristive Nanoribbons Comprising Solution-Processed Strontium Titanate Nanocubes
Memristors, often comprising an insulating metal-oxide film between two metal electrodes (MIM), constitute a class of two-terminal devices that possesses tunable variations in resistance based on the applied bias history. Intense research remains focused on the metal-insulator interface, which serve...
Gespeichert in:
Veröffentlicht in: | Meeting abstracts (Electrochemical Society) 2017-09, Vol.MA2017-02 (28), p.1196-1196 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Memristors, often comprising an insulating metal-oxide film between two metal electrodes (MIM), constitute a class of two-terminal devices that possesses tunable variations in resistance based on the applied bias history. Intense research remains focused on the metal-insulator interface, which serves as the crux of coupled electronic-ionic interactions and dictates the underpinning transport mechanisms at either electrode. Top-down, ultrahigh vacuum (UVH) deposition approaches for MIM nanostructures yield highly crystalline, heteroepitaxial interfaces, but limit the number of electrode configurations due to a fixed bottom electrode. Here we report on the convective self-assembly, removal, and transfer of individual nanoribbons comprising solution-processed, single-crystalline strontium titanate (STO) perovskite oxide nanocrystals to arbitrary metallized substrates. Nanoribbon transferability enables changes in transport models ranging from interfacial trap-detrap to electrochemical metallization processes. We also demonstrate the endurance of memristive behavior, including switching ratios up to 10
4
, after nanoribbon redeposition onto polyethylene terephthalate (PET) flexible substrates. The combination of ambient, aerobic prepared nanocrystals and convective self-assembly deposition herein provides a pathway for facile, scalable manufacturing of high quality, functional oxide nanostructures on arbitrary surfaces and topologies. |
---|---|
ISSN: | 2151-2043 2151-2035 |
DOI: | 10.1149/MA2017-02/28/1196 |