Modeling of Li-ion Battery Thermal Runaway: Insights into Modeling and Prediction

This article discusses the dual challenges of modeling and predicting thermal runaway (TR) in li-ion batteries. It explores the current challenges of TR modeling, the methods for progressing from single cells to battery packs, and future directions involving the use of probabilistic methods and ML/A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electrochemical Society interface 2024-09, Vol.33 (3), p.63-68
Hauptverfasser: Coman, Paul T., Weng, Andrew, Ostanek, Jason, Darcy, Eric C., Finegan, Donal P., White, Ralph E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article discusses the dual challenges of modeling and predicting thermal runaway (TR) in li-ion batteries. It explores the current challenges of TR modeling, the methods for progressing from single cells to battery packs, and future directions involving the use of probabilistic methods and ML/AI to tackle this multifaceted issue. Accurate prediction of TR events remains a major challenge, especially because of the cell-to-cell variability, but also due to parametrization, which requires complex experimentation or exhaustive experimental data for training data-driven ML models. Continued research and innovation in modeling and predictive techniques are essential for ensuring safer and more reliable battery systems.
ISSN:1064-8208
1944-8783
DOI:10.1149/2.F09243IF