Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction

Iron-nitrogen-carbon nanoparticles modified porous graphene (Fe-N-C/PGR) was synthesized from the pyrolysis of porous freeze-dried composites of iron (II) phthalocyanine (FePc) nanoclusters and graphene oxide (GO). By pyrolysis in argon atmosphere, the GO was reduced into graphene (GR), and the FePc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2018-01, Vol.165 (9), p.H510-H516
Hauptverfasser: Zhang, Yan, Qian, Lei, Zhao, Wen, Li, Xiaomin, Huang, Xiaoshuai, Mai, Xianmin, Wang, Zhikang, Shao, Qian, Yan, Xingru, Guo, Zhanhu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H516
container_issue 9
container_start_page H510
container_title Journal of the Electrochemical Society
container_volume 165
creator Zhang, Yan
Qian, Lei
Zhao, Wen
Li, Xiaomin
Huang, Xiaoshuai
Mai, Xianmin
Wang, Zhikang
Shao, Qian
Yan, Xingru
Guo, Zhanhu
description Iron-nitrogen-carbon nanoparticles modified porous graphene (Fe-N-C/PGR) was synthesized from the pyrolysis of porous freeze-dried composites of iron (II) phthalocyanine (FePc) nanoclusters and graphene oxide (GO). By pyrolysis in argon atmosphere, the GO was reduced into graphene (GR), and the FePc nanoclusters were converted to Fe-N-C nanoparticles on the GR surface. The morphologies and composition of the resulted Fe-N-C/PGR composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectra. The Fe-N-C/PGR composites exhibited three-dimensional interpenetrated porous structure, and many particles with Fe-N-C active sites were distributed on the GR nanosheets. Electrocatalytic properties of the Fe-N-C/PGR composites were investigated by cyclic voltammetry and linear sweep voltammetry. For the Fe-N-C/PGR composites with 3:1 mass ratio of FePc nanoclusters to GO precursor, it showed the highest electrocatalytic activity with the peak current density of 5.82 mA cm−2 at −0.39 V, which was ascribed to the synergistic effect of Fe-N-C active sites and PGR with good porous structures. The electron transfer number of 3.94 for the Fe-N-C/PGR composite indicated a direct 4-electron pathway for the ORR. Furthermore, the Fe-N-C/PGR composites showed high stability and better tolerance to methanol than the commercial 20% Pt/C catalysts.
doi_str_mv 10.1149/2.0991809jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0991809jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0991809JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d02333727f2a6d992570f96f508de0b804763aaf85706aadc843b03832cc42893</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoOFZ3PkCWLkzNbWaSpQy9CLUV0fWQ5tKmtJMhmQH79k6t4MbV-c7Px-HwA3BP8JgQLp_oGEtJBJY7my5ARiTPUUkIuQQZxoQhXuTkGtyktBtWIniZgc3cb7b7I5w457W3TQenFi1RBZeqCa2Kndd7m-BrMN55a-BbiKFPcBZVu7WNhVU4tCH5bnBciHD1ddzYBr5b0-vOhxOpH7gFV07tk737nSPwOZ18VHO0WM1equcF0qykHTKYMjZQ6agqjJQ0L7GThcuxMBavBeZlwZRyYsgLpYwWnK0xE4xqzamQbAQez3d1DClF6-o2-oOKx5rg-lRSTeu_kgb94az70Na70MdmeO5_9RvACGcz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction</title><source>IOP Publishing Journals</source><creator>Zhang, Yan ; Qian, Lei ; Zhao, Wen ; Li, Xiaomin ; Huang, Xiaoshuai ; Mai, Xianmin ; Wang, Zhikang ; Shao, Qian ; Yan, Xingru ; Guo, Zhanhu</creator><creatorcontrib>Zhang, Yan ; Qian, Lei ; Zhao, Wen ; Li, Xiaomin ; Huang, Xiaoshuai ; Mai, Xianmin ; Wang, Zhikang ; Shao, Qian ; Yan, Xingru ; Guo, Zhanhu</creatorcontrib><description>Iron-nitrogen-carbon nanoparticles modified porous graphene (Fe-N-C/PGR) was synthesized from the pyrolysis of porous freeze-dried composites of iron (II) phthalocyanine (FePc) nanoclusters and graphene oxide (GO). By pyrolysis in argon atmosphere, the GO was reduced into graphene (GR), and the FePc nanoclusters were converted to Fe-N-C nanoparticles on the GR surface. The morphologies and composition of the resulted Fe-N-C/PGR composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectra. The Fe-N-C/PGR composites exhibited three-dimensional interpenetrated porous structure, and many particles with Fe-N-C active sites were distributed on the GR nanosheets. Electrocatalytic properties of the Fe-N-C/PGR composites were investigated by cyclic voltammetry and linear sweep voltammetry. For the Fe-N-C/PGR composites with 3:1 mass ratio of FePc nanoclusters to GO precursor, it showed the highest electrocatalytic activity with the peak current density of 5.82 mA cm−2 at −0.39 V, which was ascribed to the synergistic effect of Fe-N-C active sites and PGR with good porous structures. The electron transfer number of 3.94 for the Fe-N-C/PGR composite indicated a direct 4-electron pathway for the ORR. Furthermore, the Fe-N-C/PGR composites showed high stability and better tolerance to methanol than the commercial 20% Pt/C catalysts.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0991809jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2018-01, Vol.165 (9), p.H510-H516</ispartof><rights>2018 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d02333727f2a6d992570f96f508de0b804763aaf85706aadc843b03832cc42893</citedby><cites>FETCH-LOGICAL-c372t-d02333727f2a6d992570f96f508de0b804763aaf85706aadc843b03832cc42893</cites><orcidid>0000-0003-0134-0210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0991809jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,4024,27923,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Qian, Lei</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><creatorcontrib>Li, Xiaomin</creatorcontrib><creatorcontrib>Huang, Xiaoshuai</creatorcontrib><creatorcontrib>Mai, Xianmin</creatorcontrib><creatorcontrib>Wang, Zhikang</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Yan, Xingru</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Iron-nitrogen-carbon nanoparticles modified porous graphene (Fe-N-C/PGR) was synthesized from the pyrolysis of porous freeze-dried composites of iron (II) phthalocyanine (FePc) nanoclusters and graphene oxide (GO). By pyrolysis in argon atmosphere, the GO was reduced into graphene (GR), and the FePc nanoclusters were converted to Fe-N-C nanoparticles on the GR surface. The morphologies and composition of the resulted Fe-N-C/PGR composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectra. The Fe-N-C/PGR composites exhibited three-dimensional interpenetrated porous structure, and many particles with Fe-N-C active sites were distributed on the GR nanosheets. Electrocatalytic properties of the Fe-N-C/PGR composites were investigated by cyclic voltammetry and linear sweep voltammetry. For the Fe-N-C/PGR composites with 3:1 mass ratio of FePc nanoclusters to GO precursor, it showed the highest electrocatalytic activity with the peak current density of 5.82 mA cm−2 at −0.39 V, which was ascribed to the synergistic effect of Fe-N-C active sites and PGR with good porous structures. The electron transfer number of 3.94 for the Fe-N-C/PGR composite indicated a direct 4-electron pathway for the ORR. Furthermore, the Fe-N-C/PGR composites showed high stability and better tolerance to methanol than the commercial 20% Pt/C catalysts.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEUhoMoOFZ3PkCWLkzNbWaSpQy9CLUV0fWQ5tKmtJMhmQH79k6t4MbV-c7Px-HwA3BP8JgQLp_oGEtJBJY7my5ARiTPUUkIuQQZxoQhXuTkGtyktBtWIniZgc3cb7b7I5w457W3TQenFi1RBZeqCa2Kndd7m-BrMN55a-BbiKFPcBZVu7WNhVU4tCH5bnBciHD1ddzYBr5b0-vOhxOpH7gFV07tk737nSPwOZ18VHO0WM1equcF0qykHTKYMjZQ6agqjJQ0L7GThcuxMBavBeZlwZRyYsgLpYwWnK0xE4xqzamQbAQez3d1DClF6-o2-oOKx5rg-lRSTeu_kgb94az70Na70MdmeO5_9RvACGcz</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhang, Yan</creator><creator>Qian, Lei</creator><creator>Zhao, Wen</creator><creator>Li, Xiaomin</creator><creator>Huang, Xiaoshuai</creator><creator>Mai, Xianmin</creator><creator>Wang, Zhikang</creator><creator>Shao, Qian</creator><creator>Yan, Xingru</creator><creator>Guo, Zhanhu</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0134-0210</orcidid></search><sort><creationdate>201801</creationdate><title>Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction</title><author>Zhang, Yan ; Qian, Lei ; Zhao, Wen ; Li, Xiaomin ; Huang, Xiaoshuai ; Mai, Xianmin ; Wang, Zhikang ; Shao, Qian ; Yan, Xingru ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d02333727f2a6d992570f96f508de0b804763aaf85706aadc843b03832cc42893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Qian, Lei</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><creatorcontrib>Li, Xiaomin</creatorcontrib><creatorcontrib>Huang, Xiaoshuai</creatorcontrib><creatorcontrib>Mai, Xianmin</creatorcontrib><creatorcontrib>Wang, Zhikang</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Yan, Xingru</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Qian, Lei</au><au>Zhao, Wen</au><au>Li, Xiaomin</au><au>Huang, Xiaoshuai</au><au>Mai, Xianmin</au><au>Wang, Zhikang</au><au>Shao, Qian</au><au>Yan, Xingru</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2018-01</date><risdate>2018</risdate><volume>165</volume><issue>9</issue><spage>H510</spage><epage>H516</epage><pages>H510-H516</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Iron-nitrogen-carbon nanoparticles modified porous graphene (Fe-N-C/PGR) was synthesized from the pyrolysis of porous freeze-dried composites of iron (II) phthalocyanine (FePc) nanoclusters and graphene oxide (GO). By pyrolysis in argon atmosphere, the GO was reduced into graphene (GR), and the FePc nanoclusters were converted to Fe-N-C nanoparticles on the GR surface. The morphologies and composition of the resulted Fe-N-C/PGR composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectra. The Fe-N-C/PGR composites exhibited three-dimensional interpenetrated porous structure, and many particles with Fe-N-C active sites were distributed on the GR nanosheets. Electrocatalytic properties of the Fe-N-C/PGR composites were investigated by cyclic voltammetry and linear sweep voltammetry. For the Fe-N-C/PGR composites with 3:1 mass ratio of FePc nanoclusters to GO precursor, it showed the highest electrocatalytic activity with the peak current density of 5.82 mA cm−2 at −0.39 V, which was ascribed to the synergistic effect of Fe-N-C active sites and PGR with good porous structures. The electron transfer number of 3.94 for the Fe-N-C/PGR composite indicated a direct 4-electron pathway for the ORR. Furthermore, the Fe-N-C/PGR composites showed high stability and better tolerance to methanol than the commercial 20% Pt/C catalysts.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0991809jes</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0134-0210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2018-01, Vol.165 (9), p.H510-H516
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_0991809jes
source IOP Publishing Journals
title Highly Efficient Fe-N-C Nanoparticles Modified Porous Graphene Composites for Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Fe-N-C%20Nanoparticles%20Modified%20Porous%20Graphene%20Composites%20for%20Oxygen%20Reduction%20Reaction&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Zhang,%20Yan&rft.date=2018-01&rft.volume=165&rft.issue=9&rft.spage=H510&rft.epage=H516&rft.pages=H510-H516&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0991809jes&rft_dat=%3Ciop_cross%3E0991809JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true