Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder
In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfe...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2019, Vol.166 (6), p.A1121-A1126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A1126 |
---|---|
container_issue | 6 |
container_start_page | A1121 |
container_title | Journal of the Electrochemical Society |
container_volume | 166 |
creator | An, Seong Jin Li, Jianlin Daniel, Claus Wood, David L. |
description | In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study. |
doi_str_mv | 10.1149/2.0591906jes |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0591906jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0591906JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKs3f0Dw5MGtmd1kd3Nsa6uFgh5aryG7TdyUblKSVOi_N6WCF0_zhvkY3nsI3QMZAVD-nI8I48BJuVXhAg2AU5ZVAHCJBoRAkdGSwTW6CWGbVqhpNUBqprVqY8BO4_Uuevlt3E5FvDRfXcQrr2TslY3YWDzuG3OSY-Oxs4mInTn02SLpiYxR-SN-9XLfmaiwtBv88fkyxxNjN8rfoistd0Hd_c4hWs9nq-lbtnx_XUzHy6zNOYuZpECTG9WWRc5pBbTmUlKuGSuITqeqasoaqrxJEGvKvKx12TRSAZf1hhV5MUQP578uRCNCm6y0XeusTREFMMII1Al6OkOtdyF4pcXem176owAiTj2KXPz1mPDHM27cXmzdwduU4H_0B20rcgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</title><source>IOP Publishing Journals</source><creator>An, Seong Jin ; Li, Jianlin ; Daniel, Claus ; Wood, David L.</creator><creatorcontrib>An, Seong Jin ; Li, Jianlin ; Daniel, Claus ; Wood, David L. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0591906jes</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>Batteries - Lithium ; ENERGY STORAGE ; Lithium-ion battery ; Surface Science ; UV light ; XPS</subject><ispartof>Journal of the Electrochemical Society, 2019, Vol.166 (6), p.A1121-A1126</ispartof><rights>The Author(s) 2019. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</citedby><cites>FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</cites><orcidid>0000-0001-7981-4418 ; 0000-0002-8710-9847 ; 0000-0002-2471-4214 ; 0000000224714214 ; 0000000179814418 ; 0000000287109847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0591906jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1505018$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Seong Jin</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Wood, David L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.</description><subject>Batteries - Lithium</subject><subject>ENERGY STORAGE</subject><subject>Lithium-ion battery</subject><subject>Surface Science</subject><subject>UV light</subject><subject>XPS</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkEFLAzEQhYMoWKs3f0Dw5MGtmd1kd3Nsa6uFgh5aryG7TdyUblKSVOi_N6WCF0_zhvkY3nsI3QMZAVD-nI8I48BJuVXhAg2AU5ZVAHCJBoRAkdGSwTW6CWGbVqhpNUBqprVqY8BO4_Uuevlt3E5FvDRfXcQrr2TslY3YWDzuG3OSY-Oxs4mInTn02SLpiYxR-SN-9XLfmaiwtBv88fkyxxNjN8rfoistd0Hd_c4hWs9nq-lbtnx_XUzHy6zNOYuZpECTG9WWRc5pBbTmUlKuGSuITqeqasoaqrxJEGvKvKx12TRSAZf1hhV5MUQP578uRCNCm6y0XeusTREFMMII1Al6OkOtdyF4pcXem176owAiTj2KXPz1mPDHM27cXmzdwduU4H_0B20rcgw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>An, Seong Jin</creator><creator>Li, Jianlin</creator><creator>Daniel, Claus</creator><creator>Wood, David L.</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7981-4418</orcidid><orcidid>https://orcid.org/0000-0002-8710-9847</orcidid><orcidid>https://orcid.org/0000-0002-2471-4214</orcidid><orcidid>https://orcid.org/0000000224714214</orcidid><orcidid>https://orcid.org/0000000179814418</orcidid><orcidid>https://orcid.org/0000000287109847</orcidid></search><sort><creationdate>2019</creationdate><title>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</title><author>An, Seong Jin ; Li, Jianlin ; Daniel, Claus ; Wood, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries - Lithium</topic><topic>ENERGY STORAGE</topic><topic>Lithium-ion battery</topic><topic>Surface Science</topic><topic>UV light</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Seong Jin</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Wood, David L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Seong Jin</au><au>Li, Jianlin</au><au>Daniel, Claus</au><au>Wood, David L.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2019</date><risdate>2019</risdate><volume>166</volume><issue>6</issue><spage>A1121</spage><epage>A1126</epage><pages>A1121-A1126</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><doi>10.1149/2.0591906jes</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7981-4418</orcidid><orcidid>https://orcid.org/0000-0002-8710-9847</orcidid><orcidid>https://orcid.org/0000-0002-2471-4214</orcidid><orcidid>https://orcid.org/0000000224714214</orcidid><orcidid>https://orcid.org/0000000179814418</orcidid><orcidid>https://orcid.org/0000000287109847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2019, Vol.166 (6), p.A1121-A1126 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_2_0591906jes |
source | IOP Publishing Journals |
subjects | Batteries - Lithium ENERGY STORAGE Lithium-ion battery Surface Science UV light XPS |
title | Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Ultraviolet%20Light%20Treatment%20in%20Ambient%20Air%20on%20Lithium-Ion%20Battery%20Graphite%20and%20PVDF%20Binder&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=An,%20Seong%20Jin&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019&rft.volume=166&rft.issue=6&rft.spage=A1121&rft.epage=A1126&rft.pages=A1121-A1126&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0591906jes&rft_dat=%3Ciop_cross%3E0591906JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |