Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder

In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2019, Vol.166 (6), p.A1121-A1126
Hauptverfasser: An, Seong Jin, Li, Jianlin, Daniel, Claus, Wood, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A1126
container_issue 6
container_start_page A1121
container_title Journal of the Electrochemical Society
container_volume 166
creator An, Seong Jin
Li, Jianlin
Daniel, Claus
Wood, David L.
description In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.
doi_str_mv 10.1149/2.0591906jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0591906jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0591906JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKs3f0Dw5MGtmd1kd3Nsa6uFgh5aryG7TdyUblKSVOi_N6WCF0_zhvkY3nsI3QMZAVD-nI8I48BJuVXhAg2AU5ZVAHCJBoRAkdGSwTW6CWGbVqhpNUBqprVqY8BO4_Uuevlt3E5FvDRfXcQrr2TslY3YWDzuG3OSY-Oxs4mInTn02SLpiYxR-SN-9XLfmaiwtBv88fkyxxNjN8rfoistd0Hd_c4hWs9nq-lbtnx_XUzHy6zNOYuZpECTG9WWRc5pBbTmUlKuGSuITqeqasoaqrxJEGvKvKx12TRSAZf1hhV5MUQP578uRCNCm6y0XeusTREFMMII1Al6OkOtdyF4pcXem176owAiTj2KXPz1mPDHM27cXmzdwduU4H_0B20rcgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</title><source>IOP Publishing Journals</source><creator>An, Seong Jin ; Li, Jianlin ; Daniel, Claus ; Wood, David L.</creator><creatorcontrib>An, Seong Jin ; Li, Jianlin ; Daniel, Claus ; Wood, David L. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0591906jes</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>Batteries - Lithium ; ENERGY STORAGE ; Lithium-ion battery ; Surface Science ; UV light ; XPS</subject><ispartof>Journal of the Electrochemical Society, 2019, Vol.166 (6), p.A1121-A1126</ispartof><rights>The Author(s) 2019. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</citedby><cites>FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</cites><orcidid>0000-0001-7981-4418 ; 0000-0002-8710-9847 ; 0000-0002-2471-4214 ; 0000000224714214 ; 0000000179814418 ; 0000000287109847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0591906jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1505018$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Seong Jin</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Wood, David L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.</description><subject>Batteries - Lithium</subject><subject>ENERGY STORAGE</subject><subject>Lithium-ion battery</subject><subject>Surface Science</subject><subject>UV light</subject><subject>XPS</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkEFLAzEQhYMoWKs3f0Dw5MGtmd1kd3Nsa6uFgh5aryG7TdyUblKSVOi_N6WCF0_zhvkY3nsI3QMZAVD-nI8I48BJuVXhAg2AU5ZVAHCJBoRAkdGSwTW6CWGbVqhpNUBqprVqY8BO4_Uuevlt3E5FvDRfXcQrr2TslY3YWDzuG3OSY-Oxs4mInTn02SLpiYxR-SN-9XLfmaiwtBv88fkyxxNjN8rfoistd0Hd_c4hWs9nq-lbtnx_XUzHy6zNOYuZpECTG9WWRc5pBbTmUlKuGSuITqeqasoaqrxJEGvKvKx12TRSAZf1hhV5MUQP578uRCNCm6y0XeusTREFMMII1Al6OkOtdyF4pcXem176owAiTj2KXPz1mPDHM27cXmzdwduU4H_0B20rcgw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>An, Seong Jin</creator><creator>Li, Jianlin</creator><creator>Daniel, Claus</creator><creator>Wood, David L.</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7981-4418</orcidid><orcidid>https://orcid.org/0000-0002-8710-9847</orcidid><orcidid>https://orcid.org/0000-0002-2471-4214</orcidid><orcidid>https://orcid.org/0000000224714214</orcidid><orcidid>https://orcid.org/0000000179814418</orcidid><orcidid>https://orcid.org/0000000287109847</orcidid></search><sort><creationdate>2019</creationdate><title>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</title><author>An, Seong Jin ; Li, Jianlin ; Daniel, Claus ; Wood, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a414fecec6329471489aa49f5530f14f77b68172bfec5b6268f6bbae19a8d5323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries - Lithium</topic><topic>ENERGY STORAGE</topic><topic>Lithium-ion battery</topic><topic>Surface Science</topic><topic>UV light</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Seong Jin</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Wood, David L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Seong Jin</au><au>Li, Jianlin</au><au>Daniel, Claus</au><au>Wood, David L.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2019</date><risdate>2019</risdate><volume>166</volume><issue>6</issue><spage>A1121</spage><epage>A1126</epage><pages>A1121-A1126</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>In our prior study, ultraviolet (UV) light was used for the first time to improve long-term cycling of lithium-ion battery (LIB) electrodes. It was found that UV treatment of the anode resulted in thinner solid electrolyte interphase (SEI) layers, higher capacity retentions, and lower charge transfer resistance after cycling. In this study, pristine graphite powders and polyvinylidene fluoride films (binder) with/without UV treatment were individually analyzed before cell assemblies. X-ray photoelectron spectroscopy (XPS) analysis showed a 300% increase in atomic percentage of oxygen on the graphite powder surfaces after UV treatment. However, fluorine level of the binder film decreased by more than 10%. The PVDF film also expanded in thickness by 3.7% after the UV treatment for 40 minutes, indicating scissions of the polymer backbones. The changes in PVDF weight, thickness, and fluorine atomic percentage from XPS peaks also indicated the release of fluorine containing gases (e.g., hydrogen fluoride and difluoroethylene gas) after crosslinking and scission of the PVDF. Although UV light was found to partially decompose PVDF in this study, it helped to increase oxygen level on the graphite, which, resulted in a thinner SEI layer, lower resistance, and eventually higher capacity retention as shown in our prior study.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><doi>10.1149/2.0591906jes</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7981-4418</orcidid><orcidid>https://orcid.org/0000-0002-8710-9847</orcidid><orcidid>https://orcid.org/0000-0002-2471-4214</orcidid><orcidid>https://orcid.org/0000000224714214</orcidid><orcidid>https://orcid.org/0000000179814418</orcidid><orcidid>https://orcid.org/0000000287109847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2019, Vol.166 (6), p.A1121-A1126
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_0591906jes
source IOP Publishing Journals
subjects Batteries - Lithium
ENERGY STORAGE
Lithium-ion battery
Surface Science
UV light
XPS
title Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Ultraviolet%20Light%20Treatment%20in%20Ambient%20Air%20on%20Lithium-Ion%20Battery%20Graphite%20and%20PVDF%20Binder&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=An,%20Seong%20Jin&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019&rft.volume=166&rft.issue=6&rft.spage=A1121&rft.epage=A1126&rft.pages=A1121-A1126&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0591906jes&rft_dat=%3Ciop_cross%3E0591906JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true