Li-Ion Cell Operation at Low Temperatures
Substantially reduced energy and power capabilities of lithium-ion cell operating at low temperatures pose a technical barrier for market penetration of hybrid electric vehicles and pure electric vehicles. The present work delineates Li-ion cell behaviors at low temperatures by a combined experiment...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2013-01, Vol.160 (4), p.A636-A649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A649 |
---|---|
container_issue | 4 |
container_start_page | A636 |
container_title | Journal of the Electrochemical Society |
container_volume | 160 |
creator | Ji, Yan Zhang, Yancheng Wang, Chao-Yang |
description | Substantially reduced energy and power capabilities of lithium-ion cell operating at low temperatures pose a technical barrier for market penetration of hybrid electric vehicles and pure electric vehicles. The present work delineates Li-ion cell behaviors at low temperatures by a combined experimental and modeling approach. An electrochemical-thermal coupled model, incorporating concentration- and temperature-dependent transport and kinetic properties, is applied and validated against 2.2Ah 18650 cylindrical cells over a wide range of temperatures (−20°C to 45°C) and discharge rates. Simulation and experimental results demonstrate the dramatic effects of cell self-heating upon electrochemical performance. A nonisothermal Ragone plot accounting for these important thermal effects is proposed for the first time for Li-ion cells and more generally for thermally coupled batteries. Detailed resistance analysis indicates that performance limits at −20°C depend on not only discharge rates but also thermal conditions. Optimization of cell design parameters and material properties is performed for 1 C rate discharge starting from −20°C, where the principal performance limitations are found to be Li+ diffusion in the electrolyte and solid-state Li diffusion in graphite particles, instead of charge-transfer kinetic or ohmic resistance. |
doi_str_mv | 10.1149/2.047304jes |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_047304jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>047304JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-27020ac4c0b65e9332523e28a7b675c2e7ac68933f843daaed4b7053663bebf13</originalsourceid><addsrcrecordid>eNptj01Lw0AYhBdRMFZP_oHcRGTr--5nepTgRyHQSz0vm-0bSEibsJsi_nujFU-ehhkehhnGbhGWiGr1KJagrATVUTpjGa6U5hYRz1kGgJIro_GSXaXUzRYLZTN2X7V8PRzykvo-34wU_dTO1k95NXzkW9r_RMdI6ZpdNL5PdPOrC_b-8rwt33i1eV2XTxUPEsTEhQUBPqgAtdG0klJoIUkU3tbG6iDI-mCKOW8KJXfe007VFrQ0RtZUNygX7OHUG-KQUqTGjbHd-_jpENz3Syfc38uZvjvR7TC6bjjGw7ztX_ILSLhP3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Li-Ion Cell Operation at Low Temperatures</title><source>Institute of Physics Journals</source><creator>Ji, Yan ; Zhang, Yancheng ; Wang, Chao-Yang</creator><creatorcontrib>Ji, Yan ; Zhang, Yancheng ; Wang, Chao-Yang</creatorcontrib><description>Substantially reduced energy and power capabilities of lithium-ion cell operating at low temperatures pose a technical barrier for market penetration of hybrid electric vehicles and pure electric vehicles. The present work delineates Li-ion cell behaviors at low temperatures by a combined experimental and modeling approach. An electrochemical-thermal coupled model, incorporating concentration- and temperature-dependent transport and kinetic properties, is applied and validated against 2.2Ah 18650 cylindrical cells over a wide range of temperatures (−20°C to 45°C) and discharge rates. Simulation and experimental results demonstrate the dramatic effects of cell self-heating upon electrochemical performance. A nonisothermal Ragone plot accounting for these important thermal effects is proposed for the first time for Li-ion cells and more generally for thermally coupled batteries. Detailed resistance analysis indicates that performance limits at −20°C depend on not only discharge rates but also thermal conditions. Optimization of cell design parameters and material properties is performed for 1 C rate discharge starting from −20°C, where the principal performance limitations are found to be Li+ diffusion in the electrolyte and solid-state Li diffusion in graphite particles, instead of charge-transfer kinetic or ohmic resistance.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.047304jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2013-01, Vol.160 (4), p.A636-A649</ispartof><rights>2013 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-27020ac4c0b65e9332523e28a7b675c2e7ac68933f843daaed4b7053663bebf13</citedby><cites>FETCH-LOGICAL-c302t-27020ac4c0b65e9332523e28a7b675c2e7ac68933f843daaed4b7053663bebf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.047304jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Ji, Yan</creatorcontrib><creatorcontrib>Zhang, Yancheng</creatorcontrib><creatorcontrib>Wang, Chao-Yang</creatorcontrib><title>Li-Ion Cell Operation at Low Temperatures</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Substantially reduced energy and power capabilities of lithium-ion cell operating at low temperatures pose a technical barrier for market penetration of hybrid electric vehicles and pure electric vehicles. The present work delineates Li-ion cell behaviors at low temperatures by a combined experimental and modeling approach. An electrochemical-thermal coupled model, incorporating concentration- and temperature-dependent transport and kinetic properties, is applied and validated against 2.2Ah 18650 cylindrical cells over a wide range of temperatures (−20°C to 45°C) and discharge rates. Simulation and experimental results demonstrate the dramatic effects of cell self-heating upon electrochemical performance. A nonisothermal Ragone plot accounting for these important thermal effects is proposed for the first time for Li-ion cells and more generally for thermally coupled batteries. Detailed resistance analysis indicates that performance limits at −20°C depend on not only discharge rates but also thermal conditions. Optimization of cell design parameters and material properties is performed for 1 C rate discharge starting from −20°C, where the principal performance limitations are found to be Li+ diffusion in the electrolyte and solid-state Li diffusion in graphite particles, instead of charge-transfer kinetic or ohmic resistance.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptj01Lw0AYhBdRMFZP_oHcRGTr--5nepTgRyHQSz0vm-0bSEibsJsi_nujFU-ehhkehhnGbhGWiGr1KJagrATVUTpjGa6U5hYRz1kGgJIro_GSXaXUzRYLZTN2X7V8PRzykvo-34wU_dTO1k95NXzkW9r_RMdI6ZpdNL5PdPOrC_b-8rwt33i1eV2XTxUPEsTEhQUBPqgAtdG0klJoIUkU3tbG6iDI-mCKOW8KJXfe007VFrQ0RtZUNygX7OHUG-KQUqTGjbHd-_jpENz3Syfc38uZvjvR7TC6bjjGw7ztX_ILSLhP3Q</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Ji, Yan</creator><creator>Zhang, Yancheng</creator><creator>Wang, Chao-Yang</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130101</creationdate><title>Li-Ion Cell Operation at Low Temperatures</title><author>Ji, Yan ; Zhang, Yancheng ; Wang, Chao-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-27020ac4c0b65e9332523e28a7b675c2e7ac68933f843daaed4b7053663bebf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Yan</creatorcontrib><creatorcontrib>Zhang, Yancheng</creatorcontrib><creatorcontrib>Wang, Chao-Yang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Yan</au><au>Zhang, Yancheng</au><au>Wang, Chao-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-Ion Cell Operation at Low Temperatures</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>160</volume><issue>4</issue><spage>A636</spage><epage>A649</epage><pages>A636-A649</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Substantially reduced energy and power capabilities of lithium-ion cell operating at low temperatures pose a technical barrier for market penetration of hybrid electric vehicles and pure electric vehicles. The present work delineates Li-ion cell behaviors at low temperatures by a combined experimental and modeling approach. An electrochemical-thermal coupled model, incorporating concentration- and temperature-dependent transport and kinetic properties, is applied and validated against 2.2Ah 18650 cylindrical cells over a wide range of temperatures (−20°C to 45°C) and discharge rates. Simulation and experimental results demonstrate the dramatic effects of cell self-heating upon electrochemical performance. A nonisothermal Ragone plot accounting for these important thermal effects is proposed for the first time for Li-ion cells and more generally for thermally coupled batteries. Detailed resistance analysis indicates that performance limits at −20°C depend on not only discharge rates but also thermal conditions. Optimization of cell design parameters and material properties is performed for 1 C rate discharge starting from −20°C, where the principal performance limitations are found to be Li+ diffusion in the electrolyte and solid-state Li diffusion in graphite particles, instead of charge-transfer kinetic or ohmic resistance.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.047304jes</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2013-01, Vol.160 (4), p.A636-A649 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_2_047304jes |
source | Institute of Physics Journals |
title | Li-Ion Cell Operation at Low Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-Ion%20Cell%20Operation%20at%20Low%20Temperatures&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Ji,%20Yan&rft.date=2013-01-01&rft.volume=160&rft.issue=4&rft.spage=A636&rft.epage=A649&rft.pages=A636-A649&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.047304jes&rft_dat=%3Ciop_cross%3E047304JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |