An Alkaline Flow Battery Based on the Coordination Chemistry of Iron and Cobalt

We present the first alkaline redox flow battery (a-RFB) based on the coordination chemistry of cobalt with 1-[Bis(2-hydroxyethyl)amino]-2-propanol (mTEA) and iron with triethanolamine (TEA) in 5 M NaOH. The overall redox system has a cell voltage of 0.93 V in the charged state. Importantly, the coo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2015-01, Vol.162 (3), p.A378-A383
Hauptverfasser: Arroyo-Currás, Netzahualcóyotl, Hall, Justin W., Dick, Jeffrey E., Jones, Richard A., Bard, Allen J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the first alkaline redox flow battery (a-RFB) based on the coordination chemistry of cobalt with 1-[Bis(2-hydroxyethyl)amino]-2-propanol (mTEA) and iron with triethanolamine (TEA) in 5 M NaOH. The overall redox system has a cell voltage of 0.93 V in the charged state. Importantly, the coordination compounds are negatively charged and have limited transport through the cation exchange membrane (e.g., Nafion), minimizing the extent of redox species crossover during charge-discharge cycling. Fe-TEA is electrochemically reversible and soluble up to 0.8 M, whereas Co-mTEA presents quasireversible electron transfer kinetics and can be solubilized up to 0.7 M. Cyclability was tested with a flow cell at a concentration 0.5 M up to 30 cycles using a 50 μm thick Nafion membrane, at 30 mA/cm2, with minimal crossover (less than 4% of net concentration) or evolution of gases detected.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0461503jes