Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation
The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3F...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2019-01, Vol.166 (5), p.H3091-H3096 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | H3096 |
---|---|
container_issue | 5 |
container_start_page | H3091 |
container_title | Journal of the Electrochemical Society |
container_volume | 166 |
creator | Liu, Botong Yasin, Alhassan S. Musho, Terrence Bright, Joeseph Tang, Haibin Huang, Ling Wu, Nianqiang |
description | The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy. |
doi_str_mv | 10.1149/2.0151905jes |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0151905jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0151905JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</originalsourceid><addsrcrecordid>eNptkE1LxDAYhIMoWFdv_oAcPdg1b5qk7XFdXF2oH-DHtaRtsk3pNkuShe2_t7KCF0_DDA_DMAhdA5kDsPyOzglwyAnvlD9BEeSMxykAnKKIEEhiJjicowvvu8lCxtIIvX8Zb6pexYXZtAHfG7_dhxavnR3ws-3HqpFB4bfWBlvLIPvRB6ytwwsXjDa1kT1-McHZjRrwyhxkMHa4RGda9l5d_eoMfa4ePpZPcfH6uF4uirimIgux0ECFEpTkgoKiQmouaiYVkTTLFE8bzgRtqpSB4knNeEJUThOdZjIDmJJkhm6PvbWz3july50zW-nGEkj5c0hJy79DJvzmiBu7Kzu7d8M07n_0GzzeYFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</title><source>IOP Publishing Journals</source><creator>Liu, Botong ; Yasin, Alhassan S. ; Musho, Terrence ; Bright, Joeseph ; Tang, Haibin ; Huang, Ling ; Wu, Nianqiang</creator><creatorcontrib>Liu, Botong ; Yasin, Alhassan S. ; Musho, Terrence ; Bright, Joeseph ; Tang, Haibin ; Huang, Ling ; Wu, Nianqiang</creatorcontrib><description>The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0151905jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2019-01, Vol.166 (5), p.H3091-H3096</ispartof><rights>The Author(s) 2019. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</citedby><cites>FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</cites><orcidid>0000-0002-8888-2444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0151905jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Liu, Botong</creatorcontrib><creatorcontrib>Yasin, Alhassan S.</creatorcontrib><creatorcontrib>Musho, Terrence</creatorcontrib><creatorcontrib>Bright, Joeseph</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Nianqiang</creatorcontrib><title>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkE1LxDAYhIMoWFdv_oAcPdg1b5qk7XFdXF2oH-DHtaRtsk3pNkuShe2_t7KCF0_DDA_DMAhdA5kDsPyOzglwyAnvlD9BEeSMxykAnKKIEEhiJjicowvvu8lCxtIIvX8Zb6pexYXZtAHfG7_dhxavnR3ws-3HqpFB4bfWBlvLIPvRB6ytwwsXjDa1kT1-McHZjRrwyhxkMHa4RGda9l5d_eoMfa4ePpZPcfH6uF4uirimIgux0ECFEpTkgoKiQmouaiYVkTTLFE8bzgRtqpSB4knNeEJUThOdZjIDmJJkhm6PvbWz3july50zW-nGEkj5c0hJy79DJvzmiBu7Kzu7d8M07n_0GzzeYFg</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Liu, Botong</creator><creator>Yasin, Alhassan S.</creator><creator>Musho, Terrence</creator><creator>Bright, Joeseph</creator><creator>Tang, Haibin</creator><creator>Huang, Ling</creator><creator>Wu, Nianqiang</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8888-2444</orcidid></search><sort><creationdate>20190109</creationdate><title>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</title><author>Liu, Botong ; Yasin, Alhassan S. ; Musho, Terrence ; Bright, Joeseph ; Tang, Haibin ; Huang, Ling ; Wu, Nianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Botong</creatorcontrib><creatorcontrib>Yasin, Alhassan S.</creatorcontrib><creatorcontrib>Musho, Terrence</creatorcontrib><creatorcontrib>Bright, Joeseph</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Nianqiang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Botong</au><au>Yasin, Alhassan S.</au><au>Musho, Terrence</au><au>Bright, Joeseph</au><au>Tang, Haibin</au><au>Huang, Ling</au><au>Wu, Nianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>166</volume><issue>5</issue><spage>H3091</spage><epage>H3096</epage><pages>H3091-H3096</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0151905jes</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8888-2444</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2019-01, Vol.166 (5), p.H3091-H3096 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_2_0151905jes |
source | IOP Publishing Journals |
title | Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible-Light%20Bismuth%20Iron%20Molybdate%20Photocatalyst%20for%20Artificial%20Nitrogen%20Fixation&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Liu,%20Botong&rft.date=2019-01-09&rft.volume=166&rft.issue=5&rft.spage=H3091&rft.epage=H3096&rft.pages=H3091-H3096&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0151905jes&rft_dat=%3Ciop_cross%3E0151905JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |