Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation

The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2019-01, Vol.166 (5), p.H3091-H3096
Hauptverfasser: Liu, Botong, Yasin, Alhassan S., Musho, Terrence, Bright, Joeseph, Tang, Haibin, Huang, Ling, Wu, Nianqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H3096
container_issue 5
container_start_page H3091
container_title Journal of the Electrochemical Society
container_volume 166
creator Liu, Botong
Yasin, Alhassan S.
Musho, Terrence
Bright, Joeseph
Tang, Haibin
Huang, Ling
Wu, Nianqiang
description The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.
doi_str_mv 10.1149/2.0151905jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0151905jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0151905JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</originalsourceid><addsrcrecordid>eNptkE1LxDAYhIMoWFdv_oAcPdg1b5qk7XFdXF2oH-DHtaRtsk3pNkuShe2_t7KCF0_DDA_DMAhdA5kDsPyOzglwyAnvlD9BEeSMxykAnKKIEEhiJjicowvvu8lCxtIIvX8Zb6pexYXZtAHfG7_dhxavnR3ws-3HqpFB4bfWBlvLIPvRB6ytwwsXjDa1kT1-McHZjRrwyhxkMHa4RGda9l5d_eoMfa4ePpZPcfH6uF4uirimIgux0ECFEpTkgoKiQmouaiYVkTTLFE8bzgRtqpSB4knNeEJUThOdZjIDmJJkhm6PvbWz3july50zW-nGEkj5c0hJy79DJvzmiBu7Kzu7d8M07n_0GzzeYFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</title><source>IOP Publishing Journals</source><creator>Liu, Botong ; Yasin, Alhassan S. ; Musho, Terrence ; Bright, Joeseph ; Tang, Haibin ; Huang, Ling ; Wu, Nianqiang</creator><creatorcontrib>Liu, Botong ; Yasin, Alhassan S. ; Musho, Terrence ; Bright, Joeseph ; Tang, Haibin ; Huang, Ling ; Wu, Nianqiang</creatorcontrib><description>The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0151905jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2019-01, Vol.166 (5), p.H3091-H3096</ispartof><rights>The Author(s) 2019. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</citedby><cites>FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</cites><orcidid>0000-0002-8888-2444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0151905jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Liu, Botong</creatorcontrib><creatorcontrib>Yasin, Alhassan S.</creatorcontrib><creatorcontrib>Musho, Terrence</creatorcontrib><creatorcontrib>Bright, Joeseph</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Nianqiang</creatorcontrib><title>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkE1LxDAYhIMoWFdv_oAcPdg1b5qk7XFdXF2oH-DHtaRtsk3pNkuShe2_t7KCF0_DDA_DMAhdA5kDsPyOzglwyAnvlD9BEeSMxykAnKKIEEhiJjicowvvu8lCxtIIvX8Zb6pexYXZtAHfG7_dhxavnR3ws-3HqpFB4bfWBlvLIPvRB6ytwwsXjDa1kT1-McHZjRrwyhxkMHa4RGda9l5d_eoMfa4ePpZPcfH6uF4uirimIgux0ECFEpTkgoKiQmouaiYVkTTLFE8bzgRtqpSB4knNeEJUThOdZjIDmJJkhm6PvbWz3july50zW-nGEkj5c0hJy79DJvzmiBu7Kzu7d8M07n_0GzzeYFg</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Liu, Botong</creator><creator>Yasin, Alhassan S.</creator><creator>Musho, Terrence</creator><creator>Bright, Joeseph</creator><creator>Tang, Haibin</creator><creator>Huang, Ling</creator><creator>Wu, Nianqiang</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8888-2444</orcidid></search><sort><creationdate>20190109</creationdate><title>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</title><author>Liu, Botong ; Yasin, Alhassan S. ; Musho, Terrence ; Bright, Joeseph ; Tang, Haibin ; Huang, Ling ; Wu, Nianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-6f126e6209621e26af56c4ae0a288e57d5462db741e53c4530e923f78a81153c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Botong</creatorcontrib><creatorcontrib>Yasin, Alhassan S.</creatorcontrib><creatorcontrib>Musho, Terrence</creatorcontrib><creatorcontrib>Bright, Joeseph</creatorcontrib><creatorcontrib>Tang, Haibin</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Nianqiang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Botong</au><au>Yasin, Alhassan S.</au><au>Musho, Terrence</au><au>Bright, Joeseph</au><au>Tang, Haibin</au><au>Huang, Ling</au><au>Wu, Nianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2019-01-09</date><risdate>2019</risdate><volume>166</volume><issue>5</issue><spage>H3091</spage><epage>H3096</epage><pages>H3091-H3096</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>The vast majority of semiconductors photocatalysts reported for artificial nitrogen fixation have a large bandgap at around 3.0 eV, thus photocatalytic nitrogen reduction is driven mainly by ultraviolet light. In contrast, this report demonstrates for the first time that bismuth iron molybdate (Bi3FeMo2O12) with a bandgap of 2.25 eV exhibits visible-light photocatalytic activity toward nitrogen-to-ammonia conversion. Furthermore, introduction of oxygen vacancy to this photocatalyst increases the ammonia production rate remarkably. Density functional theory (DFT) calculation reveals that the oxygen vacancies help adsorb and stabilize the N-H intermediate species, and lower the energy barrier of intermediate reactions. This work has an implication in design of semiconductor photocatalysts for sustainable ammonia synthesis under the ambient condition using solar energy.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0151905jes</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8888-2444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2019-01, Vol.166 (5), p.H3091-H3096
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_0151905jes
source IOP Publishing Journals
title Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible-Light%20Bismuth%20Iron%20Molybdate%20Photocatalyst%20for%20Artificial%20Nitrogen%20Fixation&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Liu,%20Botong&rft.date=2019-01-09&rft.volume=166&rft.issue=5&rft.spage=H3091&rft.epage=H3096&rft.pages=H3091-H3096&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0151905jes&rft_dat=%3Ciop_cross%3E0151905JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true