Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story
The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies includi...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2013-01, Vol.160 (4), p.F470-F481 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | F481 |
---|---|
container_issue | 4 |
container_start_page | F470 |
container_title | Journal of the Electrochemical Society |
container_volume | 160 |
creator | Reifsnider, K. L. Chiu, Wilson K. S. Brinkman, Kyle S. Du, Yanhai Nakajo, Arata Rabbi, Fazle Liu, Qianlong |
description | The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties. |
doi_str_mv | 10.1149/2.012306jes |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_012306jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>012306JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKsnv0Dw4kG2Jtn_3kRbK7QIWs9LNpltU7bJkmSVBT-8KS2ePM2bN795h4fQNSUTSpPynk0IZTHJtuBO0IiWSRrllNJTNCKExlGSpfQcXTi3DSstknyEfpZ961W3GZwSDj-DU2uNuZZBfkFruh1oj02D5-DBmjVoML3Ds14Lr4zmLV7ycFC8dbgxFr8H4JvXLeCpBrse9jFKgHvAqw0cQ2aGL_GHN3a4RGdN-ISr4xyjz9l09TSPFm8vr0-Pi0iwkvlIZnkNkid5KmWTxFTKkkgavJoxXiYFl4XgdQpN1pCSZ5zkZcNA5ntdszyOx-jmkGucV5UTyoPYCKM1CF9RUlBW5gG6O0DCGucsNFVn1Y7bIRDVvt2KVX_tBvr2QCvTVVvT29CF-5f8BR5ifJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</title><source>IOP Publishing Journals</source><creator>Reifsnider, K. L. ; Chiu, Wilson K. S. ; Brinkman, Kyle S. ; Du, Yanhai ; Nakajo, Arata ; Rabbi, Fazle ; Liu, Qianlong</creator><creatorcontrib>Reifsnider, K. L. ; Chiu, Wilson K. S. ; Brinkman, Kyle S. ; Du, Yanhai ; Nakajo, Arata ; Rabbi, Fazle ; Liu, Qianlong ; Heterogeneous Functional Materials Center (HeteroFoaM) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.012306jes</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>Journal of the Electrochemical Society, 2013-01, Vol.160 (4), p.F470-F481</ispartof><rights>2013 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</citedby><cites>FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.012306jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,886,27926,27927,53848</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1081297$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reifsnider, K. L.</creatorcontrib><creatorcontrib>Chiu, Wilson K. S.</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Du, Yanhai</creatorcontrib><creatorcontrib>Nakajo, Arata</creatorcontrib><creatorcontrib>Rabbi, Fazle</creatorcontrib><creatorcontrib>Liu, Qianlong</creatorcontrib><creatorcontrib>Heterogeneous Functional Materials Center (HeteroFoaM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.</description><subject>catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKsnv0Dw4kG2Jtn_3kRbK7QIWs9LNpltU7bJkmSVBT-8KS2ePM2bN795h4fQNSUTSpPynk0IZTHJtuBO0IiWSRrllNJTNCKExlGSpfQcXTi3DSstknyEfpZ961W3GZwSDj-DU2uNuZZBfkFruh1oj02D5-DBmjVoML3Ds14Lr4zmLV7ycFC8dbgxFr8H4JvXLeCpBrse9jFKgHvAqw0cQ2aGL_GHN3a4RGdN-ISr4xyjz9l09TSPFm8vr0-Pi0iwkvlIZnkNkid5KmWTxFTKkkgavJoxXiYFl4XgdQpN1pCSZ5zkZcNA5ntdszyOx-jmkGucV5UTyoPYCKM1CF9RUlBW5gG6O0DCGucsNFVn1Y7bIRDVvt2KVX_tBvr2QCvTVVvT29CF-5f8BR5ifJg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Reifsnider, K. L.</creator><creator>Chiu, Wilson K. S.</creator><creator>Brinkman, Kyle S.</creator><creator>Du, Yanhai</creator><creator>Nakajo, Arata</creator><creator>Rabbi, Fazle</creator><creator>Liu, Qianlong</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130101</creationdate><title>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</title><author>Reifsnider, K. L. ; Chiu, Wilson K. S. ; Brinkman, Kyle S. ; Du, Yanhai ; Nakajo, Arata ; Rabbi, Fazle ; Liu, Qianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reifsnider, K. L.</creatorcontrib><creatorcontrib>Chiu, Wilson K. S.</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Du, Yanhai</creatorcontrib><creatorcontrib>Nakajo, Arata</creatorcontrib><creatorcontrib>Rabbi, Fazle</creatorcontrib><creatorcontrib>Liu, Qianlong</creatorcontrib><creatorcontrib>Heterogeneous Functional Materials Center (HeteroFoaM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reifsnider, K. L.</au><au>Chiu, Wilson K. S.</au><au>Brinkman, Kyle S.</au><au>Du, Yanhai</au><au>Nakajo, Arata</au><au>Rabbi, Fazle</au><au>Liu, Qianlong</au><aucorp>Heterogeneous Functional Materials Center (HeteroFoaM)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>160</volume><issue>4</issue><spage>F470</spage><epage>F481</epage><pages>F470-F481</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><doi>10.1149/2.012306jes</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2013-01, Vol.160 (4), p.F470-F481 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_2_012306jes |
source | IOP Publishing Journals |
subjects | catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) |
title | Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20Design%20and%20Development%20of%20Heterogeneous%20Functional%20Materials%20for%20Renewable%20Energy%20Devices:%20The%20HeteroFoaM%20Story&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Reifsnider,%20K.%20L.&rft.aucorp=Heterogeneous%20Functional%20Materials%20Center%20(HeteroFoaM)&rft.date=2013-01-01&rft.volume=160&rft.issue=4&rft.spage=F470&rft.epage=F481&rft.pages=F470-F481&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.012306jes&rft_dat=%3Ciop_cross%3E012306JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |