Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story

The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies includi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2013-01, Vol.160 (4), p.F470-F481
Hauptverfasser: Reifsnider, K. L., Chiu, Wilson K. S., Brinkman, Kyle S., Du, Yanhai, Nakajo, Arata, Rabbi, Fazle, Liu, Qianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F481
container_issue 4
container_start_page F470
container_title Journal of the Electrochemical Society
container_volume 160
creator Reifsnider, K. L.
Chiu, Wilson K. S.
Brinkman, Kyle S.
Du, Yanhai
Nakajo, Arata
Rabbi, Fazle
Liu, Qianlong
description The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.
doi_str_mv 10.1149/2.012306jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_012306jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>012306JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKsnv0Dw4kG2Jtn_3kRbK7QIWs9LNpltU7bJkmSVBT-8KS2ePM2bN795h4fQNSUTSpPynk0IZTHJtuBO0IiWSRrllNJTNCKExlGSpfQcXTi3DSstknyEfpZ961W3GZwSDj-DU2uNuZZBfkFruh1oj02D5-DBmjVoML3Ds14Lr4zmLV7ycFC8dbgxFr8H4JvXLeCpBrse9jFKgHvAqw0cQ2aGL_GHN3a4RGdN-ISr4xyjz9l09TSPFm8vr0-Pi0iwkvlIZnkNkid5KmWTxFTKkkgavJoxXiYFl4XgdQpN1pCSZ5zkZcNA5ntdszyOx-jmkGucV5UTyoPYCKM1CF9RUlBW5gG6O0DCGucsNFVn1Y7bIRDVvt2KVX_tBvr2QCvTVVvT29CF-5f8BR5ifJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</title><source>IOP Publishing Journals</source><creator>Reifsnider, K. L. ; Chiu, Wilson K. S. ; Brinkman, Kyle S. ; Du, Yanhai ; Nakajo, Arata ; Rabbi, Fazle ; Liu, Qianlong</creator><creatorcontrib>Reifsnider, K. L. ; Chiu, Wilson K. S. ; Brinkman, Kyle S. ; Du, Yanhai ; Nakajo, Arata ; Rabbi, Fazle ; Liu, Qianlong ; Heterogeneous Functional Materials Center (HeteroFoaM) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.012306jes</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>Journal of the Electrochemical Society, 2013-01, Vol.160 (4), p.F470-F481</ispartof><rights>2013 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</citedby><cites>FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.012306jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,886,27926,27927,53848</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1081297$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reifsnider, K. L.</creatorcontrib><creatorcontrib>Chiu, Wilson K. S.</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Du, Yanhai</creatorcontrib><creatorcontrib>Nakajo, Arata</creatorcontrib><creatorcontrib>Rabbi, Fazle</creatorcontrib><creatorcontrib>Liu, Qianlong</creatorcontrib><creatorcontrib>Heterogeneous Functional Materials Center (HeteroFoaM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.</description><subject>catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKsnv0Dw4kG2Jtn_3kRbK7QIWs9LNpltU7bJkmSVBT-8KS2ePM2bN795h4fQNSUTSpPynk0IZTHJtuBO0IiWSRrllNJTNCKExlGSpfQcXTi3DSstknyEfpZ961W3GZwSDj-DU2uNuZZBfkFruh1oj02D5-DBmjVoML3Ds14Lr4zmLV7ycFC8dbgxFr8H4JvXLeCpBrse9jFKgHvAqw0cQ2aGL_GHN3a4RGdN-ISr4xyjz9l09TSPFm8vr0-Pi0iwkvlIZnkNkid5KmWTxFTKkkgavJoxXiYFl4XgdQpN1pCSZ5zkZcNA5ntdszyOx-jmkGucV5UTyoPYCKM1CF9RUlBW5gG6O0DCGucsNFVn1Y7bIRDVvt2KVX_tBvr2QCvTVVvT29CF-5f8BR5ifJg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Reifsnider, K. L.</creator><creator>Chiu, Wilson K. S.</creator><creator>Brinkman, Kyle S.</creator><creator>Du, Yanhai</creator><creator>Nakajo, Arata</creator><creator>Rabbi, Fazle</creator><creator>Liu, Qianlong</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130101</creationdate><title>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</title><author>Reifsnider, K. L. ; Chiu, Wilson K. S. ; Brinkman, Kyle S. ; Du, Yanhai ; Nakajo, Arata ; Rabbi, Fazle ; Liu, Qianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d67beda475ddf431dd90d17beb22a948ad8cab5ef6f09a6a079f2ed79a6ab2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reifsnider, K. L.</creatorcontrib><creatorcontrib>Chiu, Wilson K. S.</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Du, Yanhai</creatorcontrib><creatorcontrib>Nakajo, Arata</creatorcontrib><creatorcontrib>Rabbi, Fazle</creatorcontrib><creatorcontrib>Liu, Qianlong</creatorcontrib><creatorcontrib>Heterogeneous Functional Materials Center (HeteroFoaM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reifsnider, K. L.</au><au>Chiu, Wilson K. S.</au><au>Brinkman, Kyle S.</au><au>Du, Yanhai</au><au>Nakajo, Arata</au><au>Rabbi, Fazle</au><au>Liu, Qianlong</au><aucorp>Heterogeneous Functional Materials Center (HeteroFoaM)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>160</volume><issue>4</issue><spage>F470</spage><epage>F481</epage><pages>F470-F481</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>The electrochemical science that makes many energy conversion and storage technologies work rests on our knowledge and understanding of heterogeneous materials and material systems. The function and functionality of those systems share many common features across a wide range of technologies including fuel cells, batteries, capacitors, and membranes. The science that controls that functionality for these complex material systems is typically summoned in fragments to design a specific device. The present paper discusses an attempt to create a codified multiphysics approach to that general subject, across multiple scales in space and time, for heterogeneous functional materials, or "HeteroFoaM" as we call it. The scope of the paper will be necessarily limited to a general definition of the problem focused on a few specific examples of the progress made for directions that support technologies such as conversion of chemical energy to electricity, membranes for selective transport, and charge storage devices. The principal motivation for this approach is to establish the science that controls emergent properties in heterogeneous functional materials as a foundation for design of functional material systems with performance not bounded by constituent properties.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><doi>10.1149/2.012306jes</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2013-01, Vol.160 (4), p.F470-F481
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_012306jes
source IOP Publishing Journals
subjects catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, mechanical behavior, charge transport, membrane, carbon sequestration, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
title Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20Design%20and%20Development%20of%20Heterogeneous%20Functional%20Materials%20for%20Renewable%20Energy%20Devices:%20The%20HeteroFoaM%20Story&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Reifsnider,%20K.%20L.&rft.aucorp=Heterogeneous%20Functional%20Materials%20Center%20(HeteroFoaM)&rft.date=2013-01-01&rft.volume=160&rft.issue=4&rft.spage=F470&rft.epage=F481&rft.pages=F470-F481&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.012306jes&rft_dat=%3Ciop_cross%3E012306JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true