Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides

Detection of CF4 coevolution during commercial electrowinning from oxide fluoride melts at anode potentials below those required for direct electrochemical formation raise doubts about published mechanisms of the cause of anode effects (AE). By linking anode-electrolyte potential gradients with anod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2017-01, Vol.164 (8), p.H5108-H5118
Hauptverfasser: Dorreen, M. M. R., Haverkamp, R. G., Jassim, A., Richards, N. E., Stitt, D. M., Tabereaux, A. T., Welch, B. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H5118
container_issue 8
container_start_page H5108
container_title Journal of the Electrochemical Society
container_volume 164
creator Dorreen, M. M. R.
Haverkamp, R. G.
Jassim, A.
Richards, N. E.
Stitt, D. M.
Tabereaux, A. T.
Welch, B. J.
description Detection of CF4 coevolution during commercial electrowinning from oxide fluoride melts at anode potentials below those required for direct electrochemical formation raise doubts about published mechanisms of the cause of anode effects (AE). By linking anode-electrolyte potential gradients with anode carbon structure, cell design, and the composition of gases emitted we have obtained a better understanding of all product formation reactions. Interfacial heat transfer to satisfy the entropic energy deficit is found to be the common link between electrode potential, operating conditions and gas composition for all reactions occurring in the fluoride-oxide melts studied. Concurrent thermodynamic analysis suggests that formation of an intermediate such as a fluorinated carbon surface or COF2 would lower the required potential for the overall reactionAl2O3+2Na3AlF6l+9/2C=4Al+3COg+3/2CF4g+6NaFlThis is supported by experimental verification of the intermediate. The entropic energy deficit is linked to the buildup of the resistive or passivating intermediate fluoride film on the carbon anode surface which is capable of generating Joule heat enabling the various parallel reactions to occur with or without an anode effect.
doi_str_mv 10.1149/2.0101708jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0101708jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0101708JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-a1e6113df90ca8cc5d735e3555985536da1262e072cb36666ef7e9f283e44cff3</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKs3_4A5enBrZrPZj2OprS20FKTicYnZiaZsk5Js_fjv3aLgxbkMw_vN4_EYu0Y-Qsyqu3TEkWPByy3FEzbAKpNJgYinbMA5iiTLJZ6zixi3_YllVgzYYeFMeyCnCbyBOakONkG5aCiAdzB2viF4JKU7612E5zdyMG1Jd8F_WOese4UVdaoFE_wOFl2E9adtKMK9jdG379SAdbDybdc_ztqDD0f1kp0Z1Ua6-t1D9jSbbibzZLl-WEzGy0QLnneJQsoRRWMqrlWptWwKIUlIKatSSpE3CtM8JV6k-kXk_ZApqDJpKSjLtDFiyG5_fHXwMQYy9T7YnQpfNfL6WFmd1n-V9fjND279vt76Q3B9uP_Rb8VGbNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides</title><source>IOP Publishing Journals</source><creator>Dorreen, M. M. R. ; Haverkamp, R. G. ; Jassim, A. ; Richards, N. E. ; Stitt, D. M. ; Tabereaux, A. T. ; Welch, B. J.</creator><creatorcontrib>Dorreen, M. M. R. ; Haverkamp, R. G. ; Jassim, A. ; Richards, N. E. ; Stitt, D. M. ; Tabereaux, A. T. ; Welch, B. J.</creatorcontrib><description>Detection of CF4 coevolution during commercial electrowinning from oxide fluoride melts at anode potentials below those required for direct electrochemical formation raise doubts about published mechanisms of the cause of anode effects (AE). By linking anode-electrolyte potential gradients with anode carbon structure, cell design, and the composition of gases emitted we have obtained a better understanding of all product formation reactions. Interfacial heat transfer to satisfy the entropic energy deficit is found to be the common link between electrode potential, operating conditions and gas composition for all reactions occurring in the fluoride-oxide melts studied. Concurrent thermodynamic analysis suggests that formation of an intermediate such as a fluorinated carbon surface or COF2 would lower the required potential for the overall reactionAl2O3+2Na3AlF6l+9/2C=4Al+3COg+3/2CF4g+6NaFlThis is supported by experimental verification of the intermediate. The entropic energy deficit is linked to the buildup of the resistive or passivating intermediate fluoride film on the carbon anode surface which is capable of generating Joule heat enabling the various parallel reactions to occur with or without an anode effect.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0101708jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2017-01, Vol.164 (8), p.H5108-H5118</ispartof><rights>The Author(s) 2017. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-a1e6113df90ca8cc5d735e3555985536da1262e072cb36666ef7e9f283e44cff3</citedby><cites>FETCH-LOGICAL-c306t-a1e6113df90ca8cc5d735e3555985536da1262e072cb36666ef7e9f283e44cff3</cites><orcidid>0000-0002-3890-7105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0101708jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,4010,27900,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Dorreen, M. M. R.</creatorcontrib><creatorcontrib>Haverkamp, R. G.</creatorcontrib><creatorcontrib>Jassim, A.</creatorcontrib><creatorcontrib>Richards, N. E.</creatorcontrib><creatorcontrib>Stitt, D. M.</creatorcontrib><creatorcontrib>Tabereaux, A. T.</creatorcontrib><creatorcontrib>Welch, B. J.</creatorcontrib><title>Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Detection of CF4 coevolution during commercial electrowinning from oxide fluoride melts at anode potentials below those required for direct electrochemical formation raise doubts about published mechanisms of the cause of anode effects (AE). By linking anode-electrolyte potential gradients with anode carbon structure, cell design, and the composition of gases emitted we have obtained a better understanding of all product formation reactions. Interfacial heat transfer to satisfy the entropic energy deficit is found to be the common link between electrode potential, operating conditions and gas composition for all reactions occurring in the fluoride-oxide melts studied. Concurrent thermodynamic analysis suggests that formation of an intermediate such as a fluorinated carbon surface or COF2 would lower the required potential for the overall reactionAl2O3+2Na3AlF6l+9/2C=4Al+3COg+3/2CF4g+6NaFlThis is supported by experimental verification of the intermediate. The entropic energy deficit is linked to the buildup of the resistive or passivating intermediate fluoride film on the carbon anode surface which is capable of generating Joule heat enabling the various parallel reactions to occur with or without an anode effect.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkM1LAzEQxYMoWKs3_4A5enBrZrPZj2OprS20FKTicYnZiaZsk5Js_fjv3aLgxbkMw_vN4_EYu0Y-Qsyqu3TEkWPByy3FEzbAKpNJgYinbMA5iiTLJZ6zixi3_YllVgzYYeFMeyCnCbyBOakONkG5aCiAdzB2viF4JKU7612E5zdyMG1Jd8F_WOese4UVdaoFE_wOFl2E9adtKMK9jdG379SAdbDybdc_ztqDD0f1kp0Z1Ua6-t1D9jSbbibzZLl-WEzGy0QLnneJQsoRRWMqrlWptWwKIUlIKatSSpE3CtM8JV6k-kXk_ZApqDJpKSjLtDFiyG5_fHXwMQYy9T7YnQpfNfL6WFmd1n-V9fjND279vt76Q3B9uP_Rb8VGbNk</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Dorreen, M. M. R.</creator><creator>Haverkamp, R. G.</creator><creator>Jassim, A.</creator><creator>Richards, N. E.</creator><creator>Stitt, D. M.</creator><creator>Tabereaux, A. T.</creator><creator>Welch, B. J.</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3890-7105</orcidid></search><sort><creationdate>201701</creationdate><title>Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides</title><author>Dorreen, M. M. R. ; Haverkamp, R. G. ; Jassim, A. ; Richards, N. E. ; Stitt, D. M. ; Tabereaux, A. T. ; Welch, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-a1e6113df90ca8cc5d735e3555985536da1262e072cb36666ef7e9f283e44cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorreen, M. M. R.</creatorcontrib><creatorcontrib>Haverkamp, R. G.</creatorcontrib><creatorcontrib>Jassim, A.</creatorcontrib><creatorcontrib>Richards, N. E.</creatorcontrib><creatorcontrib>Stitt, D. M.</creatorcontrib><creatorcontrib>Tabereaux, A. T.</creatorcontrib><creatorcontrib>Welch, B. J.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorreen, M. M. R.</au><au>Haverkamp, R. G.</au><au>Jassim, A.</au><au>Richards, N. E.</au><au>Stitt, D. M.</au><au>Tabereaux, A. T.</au><au>Welch, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2017-01</date><risdate>2017</risdate><volume>164</volume><issue>8</issue><spage>H5108</spage><epage>H5118</epage><pages>H5108-H5118</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Detection of CF4 coevolution during commercial electrowinning from oxide fluoride melts at anode potentials below those required for direct electrochemical formation raise doubts about published mechanisms of the cause of anode effects (AE). By linking anode-electrolyte potential gradients with anode carbon structure, cell design, and the composition of gases emitted we have obtained a better understanding of all product formation reactions. Interfacial heat transfer to satisfy the entropic energy deficit is found to be the common link between electrode potential, operating conditions and gas composition for all reactions occurring in the fluoride-oxide melts studied. Concurrent thermodynamic analysis suggests that formation of an intermediate such as a fluorinated carbon surface or COF2 would lower the required potential for the overall reactionAl2O3+2Na3AlF6l+9/2C=4Al+3COg+3/2CF4g+6NaFlThis is supported by experimental verification of the intermediate. The entropic energy deficit is linked to the buildup of the resistive or passivating intermediate fluoride film on the carbon anode surface which is capable of generating Joule heat enabling the various parallel reactions to occur with or without an anode effect.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0101708jes</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3890-7105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2017-01, Vol.164 (8), p.H5108-H5118
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_0101708jes
source IOP Publishing Journals
title Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Heat%20Transfer%20on%20Anode%20Reactions%20When%20Electrowinning%20Metal%20from%20Its%20Oxides%20Dissolved%20in%20Molten%20Fluorides&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Dorreen,%20M.%20M.%20R.&rft.date=2017-01&rft.volume=164&rft.issue=8&rft.spage=H5108&rft.epage=H5118&rft.pages=H5108-H5118&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0101708jes&rft_dat=%3Ciop_cross%3E0101708JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true