Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters

This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2018-01, Vol.165 (6), p.F3053-F3062
Hauptverfasser: Søndergaard, Tonny, Cleemann, Lars Nilausen, Becker, Hans, Steenberg, Thomas, Hjuler, Hans Aage, Seerup, Larisa, Li, Qingfeng, Jensen, Jens Oluf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F3062
container_issue 6
container_start_page F3053
container_title Journal of the Electrochemical Society
container_volume 165
creator Søndergaard, Tonny
Cleemann, Lars Nilausen
Becker, Hans
Steenberg, Thomas
Hjuler, Hans Aage
Seerup, Larisa
Li, Qingfeng
Jensen, Jens Oluf
description This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.
doi_str_mv 10.1149/2.0081806jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0081806jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0081806JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</originalsourceid><addsrcrecordid>eNptkEFLwzAYhoMoOKc3f0COHszM17Rp483VzQ0mGzjPJWm-jI6uLUl72L93Y4IXTy8vPLy8PIQ8Ap8AxOolmnCeQcblHsMVGYGKE5YCwDUZcQ6CxTKBW3IXwv5UIYvTEflatc2ObdEf6Pvgtanqqj_S1tHNdMmmOqCliy3bzD7pfMCa5ljX4ZXOnMOyP2PrDr3uq2ZHN9rrA_bowz25cboO-PCbY_I9n23zBVutP5b524qVIo165gTXMgJeOqkMWpsYowTwTCgZG8szaZNIpyWK0gqpVCJi7SwYk2apjqy1YkyeL7ulb0Pw6IrOVwftjwXw4iykiIo_ISf86YJXbVfs28E3p3P_oz-ADl9H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</title><source>Institute of Physics Journals</source><creator>Søndergaard, Tonny ; Cleemann, Lars Nilausen ; Becker, Hans ; Steenberg, Thomas ; Hjuler, Hans Aage ; Seerup, Larisa ; Li, Qingfeng ; Jensen, Jens Oluf</creator><creatorcontrib>Søndergaard, Tonny ; Cleemann, Lars Nilausen ; Becker, Hans ; Steenberg, Thomas ; Hjuler, Hans Aage ; Seerup, Larisa ; Li, Qingfeng ; Jensen, Jens Oluf</creatorcontrib><description>This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0081806jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2018-01, Vol.165 (6), p.F3053-F3062</ispartof><rights>The Author(s) 2018. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</citedby><cites>FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</cites><orcidid>0000-0002-9846-0309 ; 0000-0002-2427-7763 ; 0000-0001-5840-7477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0081806jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,4024,27923,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Søndergaard, Tonny</creatorcontrib><creatorcontrib>Cleemann, Lars Nilausen</creatorcontrib><creatorcontrib>Becker, Hans</creatorcontrib><creatorcontrib>Steenberg, Thomas</creatorcontrib><creatorcontrib>Hjuler, Hans Aage</creatorcontrib><creatorcontrib>Seerup, Larisa</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Jensen, Jens Oluf</creatorcontrib><title>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkEFLwzAYhoMoOKc3f0COHszM17Rp483VzQ0mGzjPJWm-jI6uLUl72L93Y4IXTy8vPLy8PIQ8Ap8AxOolmnCeQcblHsMVGYGKE5YCwDUZcQ6CxTKBW3IXwv5UIYvTEflatc2ObdEf6Pvgtanqqj_S1tHNdMmmOqCliy3bzD7pfMCa5ljX4ZXOnMOyP2PrDr3uq2ZHN9rrA_bowz25cboO-PCbY_I9n23zBVutP5b524qVIo165gTXMgJeOqkMWpsYowTwTCgZG8szaZNIpyWK0gqpVCJi7SwYk2apjqy1YkyeL7ulb0Pw6IrOVwftjwXw4iykiIo_ISf86YJXbVfs28E3p3P_oz-ADl9H</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Søndergaard, Tonny</creator><creator>Cleemann, Lars Nilausen</creator><creator>Becker, Hans</creator><creator>Steenberg, Thomas</creator><creator>Hjuler, Hans Aage</creator><creator>Seerup, Larisa</creator><creator>Li, Qingfeng</creator><creator>Jensen, Jens Oluf</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9846-0309</orcidid><orcidid>https://orcid.org/0000-0002-2427-7763</orcidid><orcidid>https://orcid.org/0000-0001-5840-7477</orcidid></search><sort><creationdate>201801</creationdate><title>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</title><author>Søndergaard, Tonny ; Cleemann, Lars Nilausen ; Becker, Hans ; Steenberg, Thomas ; Hjuler, Hans Aage ; Seerup, Larisa ; Li, Qingfeng ; Jensen, Jens Oluf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Søndergaard, Tonny</creatorcontrib><creatorcontrib>Cleemann, Lars Nilausen</creatorcontrib><creatorcontrib>Becker, Hans</creatorcontrib><creatorcontrib>Steenberg, Thomas</creatorcontrib><creatorcontrib>Hjuler, Hans Aage</creatorcontrib><creatorcontrib>Seerup, Larisa</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Jensen, Jens Oluf</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Søndergaard, Tonny</au><au>Cleemann, Lars Nilausen</au><au>Becker, Hans</au><au>Steenberg, Thomas</au><au>Hjuler, Hans Aage</au><au>Seerup, Larisa</au><au>Li, Qingfeng</au><au>Jensen, Jens Oluf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2018-01</date><risdate>2018</risdate><volume>165</volume><issue>6</issue><spage>F3053</spage><epage>F3062</epage><pages>F3053-F3062</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0081806jes</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9846-0309</orcidid><orcidid>https://orcid.org/0000-0002-2427-7763</orcidid><orcidid>https://orcid.org/0000-0001-5840-7477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2018-01, Vol.165 (6), p.F3053-F3062
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_0081806jes
source Institute of Physics Journals
title Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Term%20Durability%20of%20PBI-Based%20HT-PEM%20Fuel%20Cells:%20Effect%20of%20Operating%20Parameters&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=S%C3%B8ndergaard,%20Tonny&rft.date=2018-01&rft.volume=165&rft.issue=6&rft.spage=F3053&rft.epage=F3062&rft.pages=F3053-F3062&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0081806jes&rft_dat=%3Ciop_cross%3E0081806JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true