Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters
This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operat...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2018-01, Vol.165 (6), p.F3053-F3062 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | F3062 |
---|---|
container_issue | 6 |
container_start_page | F3053 |
container_title | Journal of the Electrochemical Society |
container_volume | 165 |
creator | Søndergaard, Tonny Cleemann, Lars Nilausen Becker, Hans Steenberg, Thomas Hjuler, Hans Aage Seerup, Larisa Li, Qingfeng Jensen, Jens Oluf |
description | This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs. |
doi_str_mv | 10.1149/2.0081806jes |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0081806jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0081806JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</originalsourceid><addsrcrecordid>eNptkEFLwzAYhoMoOKc3f0COHszM17Rp483VzQ0mGzjPJWm-jI6uLUl72L93Y4IXTy8vPLy8PIQ8Ap8AxOolmnCeQcblHsMVGYGKE5YCwDUZcQ6CxTKBW3IXwv5UIYvTEflatc2ObdEf6Pvgtanqqj_S1tHNdMmmOqCliy3bzD7pfMCa5ljX4ZXOnMOyP2PrDr3uq2ZHN9rrA_bowz25cboO-PCbY_I9n23zBVutP5b524qVIo165gTXMgJeOqkMWpsYowTwTCgZG8szaZNIpyWK0gqpVCJi7SwYk2apjqy1YkyeL7ulb0Pw6IrOVwftjwXw4iykiIo_ISf86YJXbVfs28E3p3P_oz-ADl9H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</title><source>Institute of Physics Journals</source><creator>Søndergaard, Tonny ; Cleemann, Lars Nilausen ; Becker, Hans ; Steenberg, Thomas ; Hjuler, Hans Aage ; Seerup, Larisa ; Li, Qingfeng ; Jensen, Jens Oluf</creator><creatorcontrib>Søndergaard, Tonny ; Cleemann, Lars Nilausen ; Becker, Hans ; Steenberg, Thomas ; Hjuler, Hans Aage ; Seerup, Larisa ; Li, Qingfeng ; Jensen, Jens Oluf</creatorcontrib><description>This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0081806jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2018-01, Vol.165 (6), p.F3053-F3062</ispartof><rights>The Author(s) 2018. Published by ECS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</citedby><cites>FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</cites><orcidid>0000-0002-9846-0309 ; 0000-0002-2427-7763 ; 0000-0001-5840-7477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0081806jes/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,4024,27923,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Søndergaard, Tonny</creatorcontrib><creatorcontrib>Cleemann, Lars Nilausen</creatorcontrib><creatorcontrib>Becker, Hans</creatorcontrib><creatorcontrib>Steenberg, Thomas</creatorcontrib><creatorcontrib>Hjuler, Hans Aage</creatorcontrib><creatorcontrib>Seerup, Larisa</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Jensen, Jens Oluf</creatorcontrib><title>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNptkEFLwzAYhoMoOKc3f0COHszM17Rp483VzQ0mGzjPJWm-jI6uLUl72L93Y4IXTy8vPLy8PIQ8Ap8AxOolmnCeQcblHsMVGYGKE5YCwDUZcQ6CxTKBW3IXwv5UIYvTEflatc2ObdEf6Pvgtanqqj_S1tHNdMmmOqCliy3bzD7pfMCa5ljX4ZXOnMOyP2PrDr3uq2ZHN9rrA_bowz25cboO-PCbY_I9n23zBVutP5b524qVIo165gTXMgJeOqkMWpsYowTwTCgZG8szaZNIpyWK0gqpVCJi7SwYk2apjqy1YkyeL7ulb0Pw6IrOVwftjwXw4iykiIo_ISf86YJXbVfs28E3p3P_oz-ADl9H</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Søndergaard, Tonny</creator><creator>Cleemann, Lars Nilausen</creator><creator>Becker, Hans</creator><creator>Steenberg, Thomas</creator><creator>Hjuler, Hans Aage</creator><creator>Seerup, Larisa</creator><creator>Li, Qingfeng</creator><creator>Jensen, Jens Oluf</creator><general>The Electrochemical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9846-0309</orcidid><orcidid>https://orcid.org/0000-0002-2427-7763</orcidid><orcidid>https://orcid.org/0000-0001-5840-7477</orcidid></search><sort><creationdate>201801</creationdate><title>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</title><author>Søndergaard, Tonny ; Cleemann, Lars Nilausen ; Becker, Hans ; Steenberg, Thomas ; Hjuler, Hans Aage ; Seerup, Larisa ; Li, Qingfeng ; Jensen, Jens Oluf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f30a6210cf69bedd5bb931083964bd086d52a7ce3cd3699534afd1bb787a2ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Søndergaard, Tonny</creatorcontrib><creatorcontrib>Cleemann, Lars Nilausen</creatorcontrib><creatorcontrib>Becker, Hans</creatorcontrib><creatorcontrib>Steenberg, Thomas</creatorcontrib><creatorcontrib>Hjuler, Hans Aage</creatorcontrib><creatorcontrib>Seerup, Larisa</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Jensen, Jens Oluf</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Søndergaard, Tonny</au><au>Cleemann, Lars Nilausen</au><au>Becker, Hans</au><au>Steenberg, Thomas</au><au>Hjuler, Hans Aage</au><au>Seerup, Larisa</au><au>Li, Qingfeng</au><au>Jensen, Jens Oluf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2018-01</date><risdate>2018</risdate><volume>165</volume><issue>6</issue><spage>F3053</spage><epage>F3062</epage><pages>F3053-F3062</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>This work studies the long-term durability of high-temperature polymer electrolyte membrane fuel cells based on acid-doped polybenzimidazole membranes. The primary focus is on acid loss via the evaporation mechanism, which is a major cause of degradation in applications that involve long-term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm−2, and temperatures of 160 or 180°C. Cell diagnostics are composed of time resolved polarization curves, post mortem analysis, and in situ temperature measurements. A major part of the cell degradation during these steady-state tests can be ascribed to increasing area-specific series resistance. By means of post mortem acid-loss measurements, the degradation is correlated to the temperature and to the accumulated gas-flow volume. Such relations are indicative of acid loss via evaporation. Current density also plays a critical role for the acid loss and, thus, for the overall cell degradation. The effect of current is likely tied to mechanisms that involve water generation, migration of electrolyte ions, and locally elevated temperature inside the MEAs.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0081806jes</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9846-0309</orcidid><orcidid>https://orcid.org/0000-0002-2427-7763</orcidid><orcidid>https://orcid.org/0000-0001-5840-7477</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2018-01, Vol.165 (6), p.F3053-F3062 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_2_0081806jes |
source | Institute of Physics Journals |
title | Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Term%20Durability%20of%20PBI-Based%20HT-PEM%20Fuel%20Cells:%20Effect%20of%20Operating%20Parameters&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=S%C3%B8ndergaard,%20Tonny&rft.date=2018-01&rft.volume=165&rft.issue=6&rft.spage=F3053&rft.epage=F3062&rft.pages=F3053-F3062&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0081806jes&rft_dat=%3Ciop_cross%3E0081806JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |