Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles

The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS journal of solid state science and technology 2023-05, Vol.12 (5), p.57012
Hauptverfasser: Gifta, G., Jebalin, I. V.Binola K., Franklin, S. Angen, Rani, D. Gracia Nirmala, Nirmal, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 57012
container_title ECS journal of solid state science and technology
container_volume 12
creator Gifta, G.
Jebalin, I. V.Binola K.
Franklin, S. Angen
Rani, D. Gracia Nirmala
Nirmal, D.
description The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.
doi_str_mv 10.1149/2162-8777/acd6b7
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2162_8777_acd6b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jssacd6b7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-784cd1c4461c58e1090a1df1266cc8ddd52a94acd537cf87db329848fb1138743</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiQS5e-wPcHX7Qds9LqhogsGIem1KP7RYtqRdDvx7SzDcnMtMJvO-eecB4BrVtwjR5g4jhivBOb9T2rAVPwOD0-r8NLPmEoxyXtelmKCc4AH4aTsV9r3XKsCXaGwIvvuCqjNw6Te7oHofOxgdnCW1_badhROVrYETH7Ptckywj_De9lb3cNm-Lavp4rPC0KW4ga1NMRfbV5WKf7D5Clw4FbId_fUh-Hh8eJ8-VfPF7HnaziuNCekrLqg2SFPKkB4Li-qmVsg4hBnTWhhjxlg1tDw6Jlw7wc2K4EZQ4VYIEcEpGYL66KtLgJysk9vkNyrtJarlgZc8AJEHOPLIq0hujhIft3Idd6lQyf-f_wLpfWwq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gifta, G. ; Jebalin, I. V.Binola K. ; Franklin, S. Angen ; Rani, D. Gracia Nirmala ; Nirmal, D.</creator><creatorcontrib>Gifta, G. ; Jebalin, I. V.Binola K. ; Franklin, S. Angen ; Rani, D. Gracia Nirmala ; Nirmal, D.</creatorcontrib><description>The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.</description><identifier>ISSN: 2162-8769</identifier><identifier>EISSN: 2162-8777</identifier><identifier>DOI: 10.1149/2162-8777/acd6b7</identifier><identifier>CODEN: EJSSBG</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>ECS journal of solid state science and technology, 2023-05, Vol.12 (5), p.57012</ispartof><rights>2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-784cd1c4461c58e1090a1df1266cc8ddd52a94acd537cf87db329848fb1138743</cites><orcidid>0000-0002-9101-6889 ; 0000-0001-7974-1183 ; 0000-0002-0330-5243 ; 0000-0002-9751-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2162-8777/acd6b7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Gifta, G.</creatorcontrib><creatorcontrib>Jebalin, I. V.Binola K.</creatorcontrib><creatorcontrib>Franklin, S. Angen</creatorcontrib><creatorcontrib>Rani, D. Gracia Nirmala</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><title>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</title><title>ECS journal of solid state science and technology</title><addtitle>JSS</addtitle><addtitle>ECS J. Solid State Sci. Technol</addtitle><description>The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.</description><issn>2162-8769</issn><issn>2162-8777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiQS5e-wPcHX7Qds9LqhogsGIem1KP7RYtqRdDvx7SzDcnMtMJvO-eecB4BrVtwjR5g4jhivBOb9T2rAVPwOD0-r8NLPmEoxyXtelmKCc4AH4aTsV9r3XKsCXaGwIvvuCqjNw6Te7oHofOxgdnCW1_badhROVrYETH7Ptckywj_De9lb3cNm-Lavp4rPC0KW4ga1NMRfbV5WKf7D5Clw4FbId_fUh-Hh8eJ8-VfPF7HnaziuNCekrLqg2SFPKkB4Li-qmVsg4hBnTWhhjxlg1tDw6Jlw7wc2K4EZQ4VYIEcEpGYL66KtLgJysk9vkNyrtJarlgZc8AJEHOPLIq0hujhIft3Idd6lQyf-f_wLpfWwq</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Gifta, G.</creator><creator>Jebalin, I. V.Binola K.</creator><creator>Franklin, S. Angen</creator><creator>Rani, D. Gracia Nirmala</creator><creator>Nirmal, D.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9101-6889</orcidid><orcidid>https://orcid.org/0000-0001-7974-1183</orcidid><orcidid>https://orcid.org/0000-0002-0330-5243</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid></search><sort><creationdate>20230501</creationdate><title>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</title><author>Gifta, G. ; Jebalin, I. V.Binola K. ; Franklin, S. Angen ; Rani, D. Gracia Nirmala ; Nirmal, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-784cd1c4461c58e1090a1df1266cc8ddd52a94acd537cf87db329848fb1138743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gifta, G.</creatorcontrib><creatorcontrib>Jebalin, I. V.Binola K.</creatorcontrib><creatorcontrib>Franklin, S. Angen</creatorcontrib><creatorcontrib>Rani, D. Gracia Nirmala</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><collection>CrossRef</collection><jtitle>ECS journal of solid state science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gifta, G.</au><au>Jebalin, I. V.Binola K.</au><au>Franklin, S. Angen</au><au>Rani, D. Gracia Nirmala</au><au>Nirmal, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</atitle><jtitle>ECS journal of solid state science and technology</jtitle><stitle>JSS</stitle><addtitle>ECS J. Solid State Sci. Technol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>5</issue><spage>57012</spage><pages>57012-</pages><issn>2162-8769</issn><eissn>2162-8777</eissn><coden>EJSSBG</coden><abstract>The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.</abstract><pub>IOP Publishing</pub><doi>10.1149/2162-8777/acd6b7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9101-6889</orcidid><orcidid>https://orcid.org/0000-0001-7974-1183</orcidid><orcidid>https://orcid.org/0000-0002-0330-5243</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-8769
ispartof ECS journal of solid state science and technology, 2023-05, Vol.12 (5), p.57012
issn 2162-8769
2162-8777
language eng
recordid cdi_crossref_primary_10_1149_2162_8777_acd6b7
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Modelling%20and%20Simulation%20of%20Graphene%20Based%20Biosensor%20to%20Detect%20SARS-COV-2%20from%20Aerosal%20Particles&rft.jtitle=ECS%20journal%20of%20solid%20state%20science%20and%20technology&rft.au=Gifta,%20G.&rft.date=2023-05-01&rft.volume=12&rft.issue=5&rft.spage=57012&rft.pages=57012-&rft.issn=2162-8769&rft.eissn=2162-8777&rft.coden=EJSSBG&rft_id=info:doi/10.1149/2162-8777/acd6b7&rft_dat=%3Ciop_cross%3Ejssacd6b7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true