Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles
The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-...
Gespeichert in:
Veröffentlicht in: | ECS journal of solid state science and technology 2023-05, Vol.12 (5), p.57012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 57012 |
container_title | ECS journal of solid state science and technology |
container_volume | 12 |
creator | Gifta, G. Jebalin, I. V.Binola K. Franklin, S. Angen Rani, D. Gracia Nirmala Nirmal, D. |
description | The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor. |
doi_str_mv | 10.1149/2162-8777/acd6b7 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2162_8777_acd6b7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jssacd6b7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-784cd1c4461c58e1090a1df1266cc8ddd52a94acd537cf87db329848fb1138743</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiQS5e-wPcHX7Qds9LqhogsGIem1KP7RYtqRdDvx7SzDcnMtMJvO-eecB4BrVtwjR5g4jhivBOb9T2rAVPwOD0-r8NLPmEoxyXtelmKCc4AH4aTsV9r3XKsCXaGwIvvuCqjNw6Te7oHofOxgdnCW1_badhROVrYETH7Ptckywj_De9lb3cNm-Lavp4rPC0KW4ga1NMRfbV5WKf7D5Clw4FbId_fUh-Hh8eJ8-VfPF7HnaziuNCekrLqg2SFPKkB4Li-qmVsg4hBnTWhhjxlg1tDw6Jlw7wc2K4EZQ4VYIEcEpGYL66KtLgJysk9vkNyrtJarlgZc8AJEHOPLIq0hujhIft3Idd6lQyf-f_wLpfWwq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gifta, G. ; Jebalin, I. V.Binola K. ; Franklin, S. Angen ; Rani, D. Gracia Nirmala ; Nirmal, D.</creator><creatorcontrib>Gifta, G. ; Jebalin, I. V.Binola K. ; Franklin, S. Angen ; Rani, D. Gracia Nirmala ; Nirmal, D.</creatorcontrib><description>The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.</description><identifier>ISSN: 2162-8769</identifier><identifier>EISSN: 2162-8777</identifier><identifier>DOI: 10.1149/2162-8777/acd6b7</identifier><identifier>CODEN: EJSSBG</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>ECS journal of solid state science and technology, 2023-05, Vol.12 (5), p.57012</ispartof><rights>2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-784cd1c4461c58e1090a1df1266cc8ddd52a94acd537cf87db329848fb1138743</cites><orcidid>0000-0002-9101-6889 ; 0000-0001-7974-1183 ; 0000-0002-0330-5243 ; 0000-0002-9751-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2162-8777/acd6b7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Gifta, G.</creatorcontrib><creatorcontrib>Jebalin, I. V.Binola K.</creatorcontrib><creatorcontrib>Franklin, S. Angen</creatorcontrib><creatorcontrib>Rani, D. Gracia Nirmala</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><title>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</title><title>ECS journal of solid state science and technology</title><addtitle>JSS</addtitle><addtitle>ECS J. Solid State Sci. Technol</addtitle><description>The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.</description><issn>2162-8769</issn><issn>2162-8777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiQS5e-wPcHX7Qds9LqhogsGIem1KP7RYtqRdDvx7SzDcnMtMJvO-eecB4BrVtwjR5g4jhivBOb9T2rAVPwOD0-r8NLPmEoxyXtelmKCc4AH4aTsV9r3XKsCXaGwIvvuCqjNw6Te7oHofOxgdnCW1_badhROVrYETH7Ptckywj_De9lb3cNm-Lavp4rPC0KW4ga1NMRfbV5WKf7D5Clw4FbId_fUh-Hh8eJ8-VfPF7HnaziuNCekrLqg2SFPKkB4Li-qmVsg4hBnTWhhjxlg1tDw6Jlw7wc2K4EZQ4VYIEcEpGYL66KtLgJysk9vkNyrtJarlgZc8AJEHOPLIq0hujhIft3Idd6lQyf-f_wLpfWwq</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Gifta, G.</creator><creator>Jebalin, I. V.Binola K.</creator><creator>Franklin, S. Angen</creator><creator>Rani, D. Gracia Nirmala</creator><creator>Nirmal, D.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9101-6889</orcidid><orcidid>https://orcid.org/0000-0001-7974-1183</orcidid><orcidid>https://orcid.org/0000-0002-0330-5243</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid></search><sort><creationdate>20230501</creationdate><title>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</title><author>Gifta, G. ; Jebalin, I. V.Binola K. ; Franklin, S. Angen ; Rani, D. Gracia Nirmala ; Nirmal, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-784cd1c4461c58e1090a1df1266cc8ddd52a94acd537cf87db329848fb1138743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gifta, G.</creatorcontrib><creatorcontrib>Jebalin, I. V.Binola K.</creatorcontrib><creatorcontrib>Franklin, S. Angen</creatorcontrib><creatorcontrib>Rani, D. Gracia Nirmala</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><collection>CrossRef</collection><jtitle>ECS journal of solid state science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gifta, G.</au><au>Jebalin, I. V.Binola K.</au><au>Franklin, S. Angen</au><au>Rani, D. Gracia Nirmala</au><au>Nirmal, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles</atitle><jtitle>ECS journal of solid state science and technology</jtitle><stitle>JSS</stitle><addtitle>ECS J. Solid State Sci. Technol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>5</issue><spage>57012</spage><pages>57012-</pages><issn>2162-8769</issn><eissn>2162-8777</eissn><coden>EJSSBG</coden><abstract>The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.</abstract><pub>IOP Publishing</pub><doi>10.1149/2162-8777/acd6b7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9101-6889</orcidid><orcidid>https://orcid.org/0000-0001-7974-1183</orcidid><orcidid>https://orcid.org/0000-0002-0330-5243</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-8769 |
ispartof | ECS journal of solid state science and technology, 2023-05, Vol.12 (5), p.57012 |
issn | 2162-8769 2162-8777 |
language | eng |
recordid | cdi_crossref_primary_10_1149_2162_8777_acd6b7 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Modelling%20and%20Simulation%20of%20Graphene%20Based%20Biosensor%20to%20Detect%20SARS-COV-2%20from%20Aerosal%20Particles&rft.jtitle=ECS%20journal%20of%20solid%20state%20science%20and%20technology&rft.au=Gifta,%20G.&rft.date=2023-05-01&rft.volume=12&rft.issue=5&rft.spage=57012&rft.pages=57012-&rft.issn=2162-8769&rft.eissn=2162-8777&rft.coden=EJSSBG&rft_id=info:doi/10.1149/2162-8777/acd6b7&rft_dat=%3Ciop_cross%3Ejssacd6b7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |