Characterizing Through-Plane and In-Plane Ionic Conductivity of Polymer Electrolyte Membranes

Ionic transport resistance is a key performance property of polymer electrolyte membranes (PEMs) and can be determined for transport within the plane of material (in-plane, longitudinal or transverse directions) and through the thickness of the membrane (through-plane). The conductivity of extruded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cooper, Kevin
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1380
container_issue 1
container_start_page 1371
container_title
container_volume 41
creator Cooper, Kevin
description Ionic transport resistance is a key performance property of polymer electrolyte membranes (PEMs) and can be determined for transport within the plane of material (in-plane, longitudinal or transverse directions) and through the thickness of the membrane (through-plane). The conductivity of extruded Nafion® 112, dispersion-cast Nafion® NR-212 and two Gore-Select® membranes that contain a non-conductive support were characterized as a function of orientation, temperature and relative humidity. The conductivity of extruded Nafion 112 was highest in the extrusion direction and lowest in the through-plane orientation. In contrast, the conductivity of dispersion-cast NR-212 was isotropic. The effective conductivity of Gore-Select material was higher in-plane vs. through-plane, consistent with the analytical treatment of a membrane composed of layers of unequal intrinsic ion transport resistivity. The results highlight the need to make measurements in the relevant orientation.
doi_str_mv 10.1149/1.3635668
format Conference Proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_3635668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1_3635668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-c5dc1634a7fd82c3ea09444a297835195c5bcc1e8d46036ab29cf1f29df4d9de3</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EEqUw8A-8MqTEn4lHFBUaqYgOZUSR89pugpIY2SlS-PUEkenuke5uOITuSbohhKtHsmGSCSnzC7QiiuWJzFh2uXiRS3qNbmL8TFM5x7MV-igaHTSMNrQ_7XDCxyb486lJDp0eLNaDweWwQOmHFnDhB3OGsf1uxwl7hw--m3ob8LazMIYZRotfbV-HuRJv0ZXTXbR3i67R-_P2WOyS_dtLWTztE6BUjQkIA0QyrjNncgrM6lRxzjVVWc4EUQJEDUBsbrhMmdQ1VeCIo8o4bpSxbI0e_nch-BiDddVXaHsdpoqk1d8vFamWX9gv7WRWRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Characterizing Through-Plane and In-Plane Ionic Conductivity of Polymer Electrolyte Membranes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Cooper, Kevin</creator><creatorcontrib>Cooper, Kevin</creatorcontrib><description>Ionic transport resistance is a key performance property of polymer electrolyte membranes (PEMs) and can be determined for transport within the plane of material (in-plane, longitudinal or transverse directions) and through the thickness of the membrane (through-plane). The conductivity of extruded Nafion® 112, dispersion-cast Nafion® NR-212 and two Gore-Select® membranes that contain a non-conductive support were characterized as a function of orientation, temperature and relative humidity. The conductivity of extruded Nafion 112 was highest in the extrusion direction and lowest in the through-plane orientation. In contrast, the conductivity of dispersion-cast NR-212 was isotropic. The effective conductivity of Gore-Select material was higher in-plane vs. through-plane, consistent with the analytical treatment of a membrane composed of layers of unequal intrinsic ion transport resistivity. The results highlight the need to make measurements in the relevant orientation.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/1.3635668</identifier><language>eng</language><ispartof>ECS transactions, 2011, Vol.41 (1), p.1371-1380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-c5dc1634a7fd82c3ea09444a297835195c5bcc1e8d46036ab29cf1f29df4d9de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cooper, Kevin</creatorcontrib><title>Characterizing Through-Plane and In-Plane Ionic Conductivity of Polymer Electrolyte Membranes</title><title>ECS transactions</title><description>Ionic transport resistance is a key performance property of polymer electrolyte membranes (PEMs) and can be determined for transport within the plane of material (in-plane, longitudinal or transverse directions) and through the thickness of the membrane (through-plane). The conductivity of extruded Nafion® 112, dispersion-cast Nafion® NR-212 and two Gore-Select® membranes that contain a non-conductive support were characterized as a function of orientation, temperature and relative humidity. The conductivity of extruded Nafion 112 was highest in the extrusion direction and lowest in the through-plane orientation. In contrast, the conductivity of dispersion-cast NR-212 was isotropic. The effective conductivity of Gore-Select material was higher in-plane vs. through-plane, consistent with the analytical treatment of a membrane composed of layers of unequal intrinsic ion transport resistivity. The results highlight the need to make measurements in the relevant orientation.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1PwzAYhC0EEqUw8A-8MqTEn4lHFBUaqYgOZUSR89pugpIY2SlS-PUEkenuke5uOITuSbohhKtHsmGSCSnzC7QiiuWJzFh2uXiRS3qNbmL8TFM5x7MV-igaHTSMNrQ_7XDCxyb486lJDp0eLNaDweWwQOmHFnDhB3OGsf1uxwl7hw--m3ob8LazMIYZRotfbV-HuRJv0ZXTXbR3i67R-_P2WOyS_dtLWTztE6BUjQkIA0QyrjNncgrM6lRxzjVVWc4EUQJEDUBsbrhMmdQ1VeCIo8o4bpSxbI0e_nch-BiDddVXaHsdpoqk1d8vFamWX9gv7WRWRw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Cooper, Kevin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>Characterizing Through-Plane and In-Plane Ionic Conductivity of Polymer Electrolyte Membranes</title><author>Cooper, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-c5dc1634a7fd82c3ea09444a297835195c5bcc1e8d46036ab29cf1f29df4d9de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Kevin</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Kevin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterizing Through-Plane and In-Plane Ionic Conductivity of Polymer Electrolyte Membranes</atitle><btitle>ECS transactions</btitle><date>2011-01-01</date><risdate>2011</risdate><volume>41</volume><issue>1</issue><spage>1371</spage><epage>1380</epage><pages>1371-1380</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>Ionic transport resistance is a key performance property of polymer electrolyte membranes (PEMs) and can be determined for transport within the plane of material (in-plane, longitudinal or transverse directions) and through the thickness of the membrane (through-plane). The conductivity of extruded Nafion® 112, dispersion-cast Nafion® NR-212 and two Gore-Select® membranes that contain a non-conductive support were characterized as a function of orientation, temperature and relative humidity. The conductivity of extruded Nafion 112 was highest in the extrusion direction and lowest in the through-plane orientation. In contrast, the conductivity of dispersion-cast NR-212 was isotropic. The effective conductivity of Gore-Select material was higher in-plane vs. through-plane, consistent with the analytical treatment of a membrane composed of layers of unequal intrinsic ion transport resistivity. The results highlight the need to make measurements in the relevant orientation.</abstract><doi>10.1149/1.3635668</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2011, Vol.41 (1), p.1371-1380
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_1_3635668
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Characterizing Through-Plane and In-Plane Ionic Conductivity of Polymer Electrolyte Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterizing%20Through-Plane%20and%20In-Plane%20Ionic%20Conductivity%20of%20Polymer%20Electrolyte%20Membranes&rft.btitle=ECS%20transactions&rft.au=Cooper,%20Kevin&rft.date=2011-01-01&rft.volume=41&rft.issue=1&rft.spage=1371&rft.epage=1380&rft.pages=1371-1380&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/1.3635668&rft_dat=%3Ccrossref%3E10_1149_1_3635668%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true