Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential

3M's nanostructured thin film (NSTF) catalyst technology platform is the only practical example of an extended surface area catalyst which significantly reduces many performance, cost and durability barriers facing electrodes for H2/air PEM fuel cells for vehicles. In this paper we first discus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Debe, Mark K., Atanasoski, Radoslav T., Steinbach, Andrew J.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 954
container_issue 1
container_start_page 937
container_title
container_volume 41
creator Debe, Mark K.
Atanasoski, Radoslav T.
Steinbach, Andrew J.
description 3M's nanostructured thin film (NSTF) catalyst technology platform is the only practical example of an extended surface area catalyst which significantly reduces many performance, cost and durability barriers facing electrodes for H2/air PEM fuel cells for vehicles. In this paper we first discuss the recent gains in NSTF alloy ORR activities from both materials and process improvements, followed by accelerated durability tests of MEA's with these catalyst improvements. Next we discuss recent progress in tailoring NSTF anode catalysts with ultra-low precious group metal oxygen evolution reaction (OER) catalysts for high tolerance to automotive start up/shut down and cell reversal events. We follow with our progress in developing strategies and anode GDL's for optimized fuel cell water management for automotive low temperature operation. Finally we discuss a path forward to achieve the entitlement NSTF activity and comment on critical durability issues intrinsic to ultra-low loading catalysts.
doi_str_mv 10.1149/1.3635628
format Conference Proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_3635628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1_3635628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-1f12782b57086ecf8af3cf50a30406ff4ec56fb48b7c2d7043262cc6f2f22ddd3</originalsourceid><addsrcrecordid>eNotkE9LwzAYxoMoODcPfoNcPXQmb9okPUpZnTCcsHku6ZsEK10rSXrYt3fDnp4Hnj-HHyFPnK05z8sXvhZSFBL0DVnwUuhMKqFuZ19oCffkIcYfxuSlrhZk_2GGMaYwYZqCs_T43Q207voT3fQOUxjRJNOfY4o0o9UUghsSPSSTpkjNYGk9XXf0c0yXoDP9itx500f3OOuSfNWbY7XNdvu39-p1lyFAmTLuOSgNbaGYlg69Nl6gL5gRLGfS-9xhIX2b61YhWMVyARIQpQcPYK0VS_L8_4thjDE43_yG7mTCueGsuZJoeDOTEH--wVEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Debe, Mark K. ; Atanasoski, Radoslav T. ; Steinbach, Andrew J.</creator><creatorcontrib>Debe, Mark K. ; Atanasoski, Radoslav T. ; Steinbach, Andrew J.</creatorcontrib><description>3M's nanostructured thin film (NSTF) catalyst technology platform is the only practical example of an extended surface area catalyst which significantly reduces many performance, cost and durability barriers facing electrodes for H2/air PEM fuel cells for vehicles. In this paper we first discuss the recent gains in NSTF alloy ORR activities from both materials and process improvements, followed by accelerated durability tests of MEA's with these catalyst improvements. Next we discuss recent progress in tailoring NSTF anode catalysts with ultra-low precious group metal oxygen evolution reaction (OER) catalysts for high tolerance to automotive start up/shut down and cell reversal events. We follow with our progress in developing strategies and anode GDL's for optimized fuel cell water management for automotive low temperature operation. Finally we discuss a path forward to achieve the entitlement NSTF activity and comment on critical durability issues intrinsic to ultra-low loading catalysts.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/1.3635628</identifier><language>eng</language><ispartof>ECS transactions, 2011, Vol.41 (1), p.937-954</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-1f12782b57086ecf8af3cf50a30406ff4ec56fb48b7c2d7043262cc6f2f22ddd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Debe, Mark K.</creatorcontrib><creatorcontrib>Atanasoski, Radoslav T.</creatorcontrib><creatorcontrib>Steinbach, Andrew J.</creatorcontrib><title>Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential</title><title>ECS transactions</title><description>3M's nanostructured thin film (NSTF) catalyst technology platform is the only practical example of an extended surface area catalyst which significantly reduces many performance, cost and durability barriers facing electrodes for H2/air PEM fuel cells for vehicles. In this paper we first discuss the recent gains in NSTF alloy ORR activities from both materials and process improvements, followed by accelerated durability tests of MEA's with these catalyst improvements. Next we discuss recent progress in tailoring NSTF anode catalysts with ultra-low precious group metal oxygen evolution reaction (OER) catalysts for high tolerance to automotive start up/shut down and cell reversal events. We follow with our progress in developing strategies and anode GDL's for optimized fuel cell water management for automotive low temperature operation. Finally we discuss a path forward to achieve the entitlement NSTF activity and comment on critical durability issues intrinsic to ultra-low loading catalysts.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LwzAYxoMoODcPfoNcPXQmb9okPUpZnTCcsHku6ZsEK10rSXrYt3fDnp4Hnj-HHyFPnK05z8sXvhZSFBL0DVnwUuhMKqFuZ19oCffkIcYfxuSlrhZk_2GGMaYwYZqCs_T43Q207voT3fQOUxjRJNOfY4o0o9UUghsSPSSTpkjNYGk9XXf0c0yXoDP9itx500f3OOuSfNWbY7XNdvu39-p1lyFAmTLuOSgNbaGYlg69Nl6gL5gRLGfS-9xhIX2b61YhWMVyARIQpQcPYK0VS_L8_4thjDE43_yG7mTCueGsuZJoeDOTEH--wVEo</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Debe, Mark K.</creator><creator>Atanasoski, Radoslav T.</creator><creator>Steinbach, Andrew J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential</title><author>Debe, Mark K. ; Atanasoski, Radoslav T. ; Steinbach, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-1f12782b57086ecf8af3cf50a30406ff4ec56fb48b7c2d7043262cc6f2f22ddd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Debe, Mark K.</creatorcontrib><creatorcontrib>Atanasoski, Radoslav T.</creatorcontrib><creatorcontrib>Steinbach, Andrew J.</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debe, Mark K.</au><au>Atanasoski, Radoslav T.</au><au>Steinbach, Andrew J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential</atitle><btitle>ECS transactions</btitle><date>2011-01-01</date><risdate>2011</risdate><volume>41</volume><issue>1</issue><spage>937</spage><epage>954</epage><pages>937-954</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>3M's nanostructured thin film (NSTF) catalyst technology platform is the only practical example of an extended surface area catalyst which significantly reduces many performance, cost and durability barriers facing electrodes for H2/air PEM fuel cells for vehicles. In this paper we first discuss the recent gains in NSTF alloy ORR activities from both materials and process improvements, followed by accelerated durability tests of MEA's with these catalyst improvements. Next we discuss recent progress in tailoring NSTF anode catalysts with ultra-low precious group metal oxygen evolution reaction (OER) catalysts for high tolerance to automotive start up/shut down and cell reversal events. We follow with our progress in developing strategies and anode GDL's for optimized fuel cell water management for automotive low temperature operation. Finally we discuss a path forward to achieve the entitlement NSTF activity and comment on critical durability issues intrinsic to ultra-low loading catalysts.</abstract><doi>10.1149/1.3635628</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2011, Vol.41 (1), p.937-954
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_1_3635628
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Nanostructured Thin Film Electrocatalysts - Current Status and Future Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nanostructured%20Thin%20Film%20Electrocatalysts%20-%20Current%20Status%20and%20Future%20Potential&rft.btitle=ECS%20transactions&rft.au=Debe,%20Mark%20K.&rft.date=2011-01-01&rft.volume=41&rft.issue=1&rft.spage=937&rft.epage=954&rft.pages=937-954&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/1.3635628&rft_dat=%3Ccrossref%3E10_1149_1_3635628%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true