High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics

Epitaxial graphene has demonstrated a great potential for carbon-based electronic. Multiple nanoscale devices can be patterned on a scalable platform with high electronic mobility, large conductivity, and conductance modulation by an electrostatic gate. High quality seamless epitaxial graphene layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berger, Claire, Ruan, Ming, Palmer, James, Hankinson, John, Hu, Yike, Guo, Zelei, Dong, Rui, Conrad, Edward H., De Heer, Walt A.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 7
container_start_page 43
container_title
container_volume 41
creator Berger, Claire
Ruan, Ming
Palmer, James
Hankinson, John
Hu, Yike
Guo, Zelei
Dong, Rui
Conrad, Edward H.
De Heer, Walt A.
description Epitaxial graphene has demonstrated a great potential for carbon-based electronic. Multiple nanoscale devices can be patterned on a scalable platform with high electronic mobility, large conductivity, and conductance modulation by an electrostatic gate. High quality seamless epitaxial graphene layers are grown on the entire surface of SiC substrates by thermal decomposition of the SiC crystal. For multilayer epitaxial graphene grown on the 4H-SiC (000-1) surface, transport and spectroscopy measurements demonstrate an effective decoupling of the adjacent graphene layers due to a non-graphitic ordered rotational stacking. Large switching ratios require a band gap but graphene is a gapless semimetal. Transport gaps have been demonstrated in chemical functionalized graphene and in narrow ribbons. But patterning techniques severely degrade graphene. Transport data on narrow graphene ribbons directly grown on silicon carbide substrate step edges at high temperature indicate reduced edge scattering and open the way to non diffusive electronics.
doi_str_mv 10.1149/1.3633284
format Conference Proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_3633284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1_3633284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-d5b4cbf90abdffbaf8f2fc8c85508a9663488d3412f071395d0e284cfb9010813</originalsourceid><addsrcrecordid>eNotzzFPwzAUBGALgUQpDPwDrwwpfnbi2GMVlRapwNLOke34UaMQR3YG-u8pItPdcDrpI-QR2Aqg1M-wElIIrsorsgAtVCFrUV_PvVKS35K7nL8Yk5d5vSDrXfg80bdoQx-mM92MYTI_wfR0m8x48oOnGBNtTLJxKKzJvqPvZoi-925KcQgu35MbNH32D3MuyfFlc2h2xf5j-9qs94XjXE9FV9nSWdTM2A7RGlTI0Smnqoopo6UUpVKdKIEjq0HoqmP-wnBoNQOmQCzJ0_-vSzHn5LEdU_g26dwCa__sLbSzXfwCi51Lfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Berger, Claire ; Ruan, Ming ; Palmer, James ; Hankinson, John ; Hu, Yike ; Guo, Zelei ; Dong, Rui ; Conrad, Edward H. ; De Heer, Walt A.</creator><creatorcontrib>Berger, Claire ; Ruan, Ming ; Palmer, James ; Hankinson, John ; Hu, Yike ; Guo, Zelei ; Dong, Rui ; Conrad, Edward H. ; De Heer, Walt A.</creatorcontrib><description>Epitaxial graphene has demonstrated a great potential for carbon-based electronic. Multiple nanoscale devices can be patterned on a scalable platform with high electronic mobility, large conductivity, and conductance modulation by an electrostatic gate. High quality seamless epitaxial graphene layers are grown on the entire surface of SiC substrates by thermal decomposition of the SiC crystal. For multilayer epitaxial graphene grown on the 4H-SiC (000-1) surface, transport and spectroscopy measurements demonstrate an effective decoupling of the adjacent graphene layers due to a non-graphitic ordered rotational stacking. Large switching ratios require a band gap but graphene is a gapless semimetal. Transport gaps have been demonstrated in chemical functionalized graphene and in narrow ribbons. But patterning techniques severely degrade graphene. Transport data on narrow graphene ribbons directly grown on silicon carbide substrate step edges at high temperature indicate reduced edge scattering and open the way to non diffusive electronics.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/1.3633284</identifier><language>eng</language><ispartof>ECS transactions, 2011, Vol.41 (7), p.43-55</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-d5b4cbf90abdffbaf8f2fc8c85508a9663488d3412f071395d0e284cfb9010813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>Ruan, Ming</creatorcontrib><creatorcontrib>Palmer, James</creatorcontrib><creatorcontrib>Hankinson, John</creatorcontrib><creatorcontrib>Hu, Yike</creatorcontrib><creatorcontrib>Guo, Zelei</creatorcontrib><creatorcontrib>Dong, Rui</creatorcontrib><creatorcontrib>Conrad, Edward H.</creatorcontrib><creatorcontrib>De Heer, Walt A.</creatorcontrib><title>High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics</title><title>ECS transactions</title><description>Epitaxial graphene has demonstrated a great potential for carbon-based electronic. Multiple nanoscale devices can be patterned on a scalable platform with high electronic mobility, large conductivity, and conductance modulation by an electrostatic gate. High quality seamless epitaxial graphene layers are grown on the entire surface of SiC substrates by thermal decomposition of the SiC crystal. For multilayer epitaxial graphene grown on the 4H-SiC (000-1) surface, transport and spectroscopy measurements demonstrate an effective decoupling of the adjacent graphene layers due to a non-graphitic ordered rotational stacking. Large switching ratios require a band gap but graphene is a gapless semimetal. Transport gaps have been demonstrated in chemical functionalized graphene and in narrow ribbons. But patterning techniques severely degrade graphene. Transport data on narrow graphene ribbons directly grown on silicon carbide substrate step edges at high temperature indicate reduced edge scattering and open the way to non diffusive electronics.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotzzFPwzAUBGALgUQpDPwDrwwpfnbi2GMVlRapwNLOke34UaMQR3YG-u8pItPdcDrpI-QR2Aqg1M-wElIIrsorsgAtVCFrUV_PvVKS35K7nL8Yk5d5vSDrXfg80bdoQx-mM92MYTI_wfR0m8x48oOnGBNtTLJxKKzJvqPvZoi-925KcQgu35MbNH32D3MuyfFlc2h2xf5j-9qs94XjXE9FV9nSWdTM2A7RGlTI0Smnqoopo6UUpVKdKIEjq0HoqmP-wnBoNQOmQCzJ0_-vSzHn5LEdU_g26dwCa__sLbSzXfwCi51Lfw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Berger, Claire</creator><creator>Ruan, Ming</creator><creator>Palmer, James</creator><creator>Hankinson, John</creator><creator>Hu, Yike</creator><creator>Guo, Zelei</creator><creator>Dong, Rui</creator><creator>Conrad, Edward H.</creator><creator>De Heer, Walt A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics</title><author>Berger, Claire ; Ruan, Ming ; Palmer, James ; Hankinson, John ; Hu, Yike ; Guo, Zelei ; Dong, Rui ; Conrad, Edward H. ; De Heer, Walt A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-d5b4cbf90abdffbaf8f2fc8c85508a9663488d3412f071395d0e284cfb9010813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>Ruan, Ming</creatorcontrib><creatorcontrib>Palmer, James</creatorcontrib><creatorcontrib>Hankinson, John</creatorcontrib><creatorcontrib>Hu, Yike</creatorcontrib><creatorcontrib>Guo, Zelei</creatorcontrib><creatorcontrib>Dong, Rui</creatorcontrib><creatorcontrib>Conrad, Edward H.</creatorcontrib><creatorcontrib>De Heer, Walt A.</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Claire</au><au>Ruan, Ming</au><au>Palmer, James</au><au>Hankinson, John</au><au>Hu, Yike</au><au>Guo, Zelei</au><au>Dong, Rui</au><au>Conrad, Edward H.</au><au>De Heer, Walt A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics</atitle><btitle>ECS transactions</btitle><date>2011-01-01</date><risdate>2011</risdate><volume>41</volume><issue>7</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>Epitaxial graphene has demonstrated a great potential for carbon-based electronic. Multiple nanoscale devices can be patterned on a scalable platform with high electronic mobility, large conductivity, and conductance modulation by an electrostatic gate. High quality seamless epitaxial graphene layers are grown on the entire surface of SiC substrates by thermal decomposition of the SiC crystal. For multilayer epitaxial graphene grown on the 4H-SiC (000-1) surface, transport and spectroscopy measurements demonstrate an effective decoupling of the adjacent graphene layers due to a non-graphitic ordered rotational stacking. Large switching ratios require a band gap but graphene is a gapless semimetal. Transport gaps have been demonstrated in chemical functionalized graphene and in narrow ribbons. But patterning techniques severely degrade graphene. Transport data on narrow graphene ribbons directly grown on silicon carbide substrate step edges at high temperature indicate reduced edge scattering and open the way to non diffusive electronics.</abstract><doi>10.1149/1.3633284</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2011, Vol.41 (7), p.43-55
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_1_3633284
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title High Mobility Epitaxial Graphene for Carbon-based Nanoelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20Mobility%20Epitaxial%20Graphene%20for%20Carbon-based%20Nanoelectronics&rft.btitle=ECS%20transactions&rft.au=Berger,%20Claire&rft.date=2011-01-01&rft.volume=41&rft.issue=7&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/1.3633284&rft_dat=%3Ccrossref%3E10_1149_1_3633284%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true