New Insight into Differences in Cycling Behaviors of a Lithium-ion Battery Cell Between the Ethylene Carbonate- and Propylene Carbonate-Based Electrolytes

Density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations have been performed to gain insight into the difference in cycling behaviors between the ethylene carbonate (EC)-based and the propylene carbonate (PC)-based electrolytes in lithium-ion battery cells. DFT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tasaki, Ken, Goldberg, Alexander, Liang, Jian-Jie, Winter, Martin
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations have been performed to gain insight into the difference in cycling behaviors between the ethylene carbonate (EC)-based and the propylene carbonate (PC)-based electrolytes in lithium-ion battery cells. DFT calculations for the ternary graphite intercalation compounds (Li+(S)iCn: S=EC or PC), in which the solvated lithium ion Li+(S)i (i=1~3) was inserted into a graphite cell, suggested that Li+(EC)iCn was more stable than Li+(PC)iCn in general. In addition, MD simulations were carried out to examine the solvation structures at a high salt concentration: 2.45 mol kg-1. The results showed that the solvation structure was significantly interrupted by the counter anions, having a smaller solvation number than that at a lower salt concentration (0.83 mol kg-1). The results from both DFT calculations and MD simulations are consistent with the recent experimental observations.
ISSN:1938-5862
1938-6737
DOI:10.1149/1.3563090