A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells

We present a zero dimensional stationary model which precisely predicts the current-voltage-characteristics of anode supported SOFC single cells over a wide range of operating conditions. The different kinds of electrode polarization resistances are separated from experimental impedance data by mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leonide, André, Hansmann, Simon, Ivers-Tiffée, Ellen
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 11
container_start_page 341
container_title
container_volume 28
creator Leonide, André
Hansmann, Simon
Ivers-Tiffée, Ellen
description We present a zero dimensional stationary model which precisely predicts the current-voltage-characteristics of anode supported SOFC single cells over a wide range of operating conditions. The different kinds of electrode polarization resistances are separated from experimental impedance data by means of a detailed equivalent circuit model developed specifically for the analyzed cell type. The activation losses are modeled by the Butler-Volmer equation, whereas the loss contributions from gas diffusion polarizations are calculated from Fick's law. The partial pressure and temperature dependency of the cathodic and anodic exchange current density could be determined by a fit of semi empirical power law model equations. The exponents c and d for the CO and CO2 partial pressure dependency of the anodic exchange current density are determined independently of each other. This paper presents the modeling results for a wide range of operation parameters as well as their experimental verification.
doi_str_mv 10.1149/1.3495858
format Conference Proceeding
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_3495858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1_3495858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-657999698a98998ba561c37f799d63b1681586acbdad96774885cfbb363bd1343</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMouK4e_Aa5esiabJo_71iqq-LKHqrnkjYpVLJNSbqg394s9jQ_5g2PYRC6Z3TDWAGPbMMLEFroC7RiwDWRiqvLhYWW22t0k9I3pTLH1Qq9l5iSp-HoxjSE0Xhcz2Y-U_zFH8E6j_sQcTlmJPVpmkKcncV18IPFh5_BOrw75VDlvE-36Ko3Prm7Rdfoa_f8Wb2S_eHlrSr3pNuCmIkUCgAkaAMaQLdGSNZx1WfXSt4yqVkuarrWGgtSqUJr0fVty_PRMl7wNXr4_9vFkFJ0fTPF4ZgbN4w25xUa1iwr8D_y_k1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Leonide, André ; Hansmann, Simon ; Ivers-Tiffée, Ellen</creator><creatorcontrib>Leonide, André ; Hansmann, Simon ; Ivers-Tiffée, Ellen</creatorcontrib><description>We present a zero dimensional stationary model which precisely predicts the current-voltage-characteristics of anode supported SOFC single cells over a wide range of operating conditions. The different kinds of electrode polarization resistances are separated from experimental impedance data by means of a detailed equivalent circuit model developed specifically for the analyzed cell type. The activation losses are modeled by the Butler-Volmer equation, whereas the loss contributions from gas diffusion polarizations are calculated from Fick's law. The partial pressure and temperature dependency of the cathodic and anodic exchange current density could be determined by a fit of semi empirical power law model equations. The exponents c and d for the CO and CO2 partial pressure dependency of the anodic exchange current density are determined independently of each other. This paper presents the modeling results for a wide range of operation parameters as well as their experimental verification.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/1.3495858</identifier><language>eng</language><ispartof>ECS transactions, 2010, Vol.28 (11), p.341-346</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-657999698a98998ba561c37f799d63b1681586acbdad96774885cfbb363bd1343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leonide, André</creatorcontrib><creatorcontrib>Hansmann, Simon</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><title>A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells</title><title>ECS transactions</title><description>We present a zero dimensional stationary model which precisely predicts the current-voltage-characteristics of anode supported SOFC single cells over a wide range of operating conditions. The different kinds of electrode polarization resistances are separated from experimental impedance data by means of a detailed equivalent circuit model developed specifically for the analyzed cell type. The activation losses are modeled by the Butler-Volmer equation, whereas the loss contributions from gas diffusion polarizations are calculated from Fick's law. The partial pressure and temperature dependency of the cathodic and anodic exchange current density could be determined by a fit of semi empirical power law model equations. The exponents c and d for the CO and CO2 partial pressure dependency of the anodic exchange current density are determined independently of each other. This paper presents the modeling results for a wide range of operation parameters as well as their experimental verification.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LxDAUxIMouK4e_Aa5esiabJo_71iqq-LKHqrnkjYpVLJNSbqg394s9jQ_5g2PYRC6Z3TDWAGPbMMLEFroC7RiwDWRiqvLhYWW22t0k9I3pTLH1Qq9l5iSp-HoxjSE0Xhcz2Y-U_zFH8E6j_sQcTlmJPVpmkKcncV18IPFh5_BOrw75VDlvE-36Ko3Prm7Rdfoa_f8Wb2S_eHlrSr3pNuCmIkUCgAkaAMaQLdGSNZx1WfXSt4yqVkuarrWGgtSqUJr0fVty_PRMl7wNXr4_9vFkFJ0fTPF4ZgbN4w25xUa1iwr8D_y_k1k</recordid><startdate>20101008</startdate><enddate>20101008</enddate><creator>Leonide, André</creator><creator>Hansmann, Simon</creator><creator>Ivers-Tiffée, Ellen</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101008</creationdate><title>A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells</title><author>Leonide, André ; Hansmann, Simon ; Ivers-Tiffée, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-657999698a98998ba561c37f799d63b1681586acbdad96774885cfbb363bd1343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Leonide, André</creatorcontrib><creatorcontrib>Hansmann, Simon</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonide, André</au><au>Hansmann, Simon</au><au>Ivers-Tiffée, Ellen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells</atitle><btitle>ECS transactions</btitle><date>2010-10-08</date><risdate>2010</risdate><volume>28</volume><issue>11</issue><spage>341</spage><epage>346</epage><pages>341-346</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>We present a zero dimensional stationary model which precisely predicts the current-voltage-characteristics of anode supported SOFC single cells over a wide range of operating conditions. The different kinds of electrode polarization resistances are separated from experimental impedance data by means of a detailed equivalent circuit model developed specifically for the analyzed cell type. The activation losses are modeled by the Butler-Volmer equation, whereas the loss contributions from gas diffusion polarizations are calculated from Fick's law. The partial pressure and temperature dependency of the cathodic and anodic exchange current density could be determined by a fit of semi empirical power law model equations. The exponents c and d for the CO and CO2 partial pressure dependency of the anodic exchange current density are determined independently of each other. This paper presents the modeling results for a wide range of operation parameters as well as their experimental verification.</abstract><doi>10.1149/1.3495858</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2010, Vol.28 (11), p.341-346
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_1_3495858
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%200-Dimensional%20Stationary%20Model%20for%20Anode-Supported%20Solid%20Oxide%20Fuel%20Cells&rft.btitle=ECS%20transactions&rft.au=Leonide,%20Andr%C3%A9&rft.date=2010-10-08&rft.volume=28&rft.issue=11&rft.spage=341&rft.epage=346&rft.pages=341-346&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/1.3495858&rft_dat=%3Ccrossref%3E10_1149_1_3495858%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true