Mass Transfer at Longitudinally Vibrating Vertical Electrodes

Experimental measurements of limiting currents were carried out to determine the increase in mass transfer rates as a result of longitudinal vibrations applied to vertical flat-plate electrodes. Three different lengths of the electrode active areas (1.27, 2.54 5.08 cm), three different vibration amp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Electrochem. Soc.; (United States) 1982-09, Vol.129 (9), p.1955-1959
Hauptverfasser: Liu, Ming‐Biann, Rudnick, Elizabeth M., Cook, G. M., Yao, N. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1959
container_issue 9
container_start_page 1955
container_title J. Electrochem. Soc.; (United States)
container_volume 129
creator Liu, Ming‐Biann
Rudnick, Elizabeth M.
Cook, G. M.
Yao, N. P.
description Experimental measurements of limiting currents were carried out to determine the increase in mass transfer rates as a result of longitudinal vibrations applied to vertical flat-plate electrodes. Three different lengths of the electrode active areas (1.27, 2.54 5.08 cm), three different vibration amplitudes (0.0572, 0.114, and 0.229 cm), and several different vibration frequencies (ranging from 13 to 36 Hz) were used in the experiments. The current is a sum of a small a-c current and a large d-c current. The a-c current profile, which has a phase lag of 90/sup 0/, depends on the location of the electrode active area and the vibration parameters. With the experimental conditions used, the average mass-transfer coefficients are in the range of 2.8 - 14 x 10/sup -4/ cm/s, which represents an increase to 1.2 to 5 times the value for the average free-convective mass-transfer coefficient. A correlation similar to that derived from boundary-layer theory for forced convection over a flat plate is given for predicting the mass-transfer coefficient from the length of electrode active area and the vibration parameters.
doi_str_mv 10.1149/1.2124331
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_2124331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1_2124331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-794bb11ff2622a77eed00694c47d7b053e5c86dca2cf97aeecf21ca4c96d29653</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_8HgzsXUvHxMmoULKa0KI25qtyHzktTIOCNJXPTfO9KuLhcOl8sh5BboAkDoB1gwYIJzOCMz0ELWCgDOyYxS4LVoJFySq5y_pgpLoWbk8c3mXG2THXLwqbKlasdhH8uvi4Pt-0O1i12yJQ77audTiWj7at17LGl0Pl-Ti2D77G9OOScfm_V29VK378-vq6e2RiZFqZUWXQcQAmsYs0p57yhttEChnOqo5F7isnFoGQatrPcYGKAVqBvHdCP5nNwdd8dcoskYi8dPHIdhOmKklJpqMUH3RwjTmHPywfyk-G3TwQA1_3IMmJMc_gfsyVY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mass Transfer at Longitudinally Vibrating Vertical Electrodes</title><source>Institute of Physics Journals</source><creator>Liu, Ming‐Biann ; Rudnick, Elizabeth M. ; Cook, G. M. ; Yao, N. P.</creator><creatorcontrib>Liu, Ming‐Biann ; Rudnick, Elizabeth M. ; Cook, G. M. ; Yao, N. P. ; Argonne National Lab., IL</creatorcontrib><description>Experimental measurements of limiting currents were carried out to determine the increase in mass transfer rates as a result of longitudinal vibrations applied to vertical flat-plate electrodes. Three different lengths of the electrode active areas (1.27, 2.54 5.08 cm), three different vibration amplitudes (0.0572, 0.114, and 0.229 cm), and several different vibration frequencies (ranging from 13 to 36 Hz) were used in the experiments. The current is a sum of a small a-c current and a large d-c current. The a-c current profile, which has a phase lag of 90/sup 0/, depends on the location of the electrode active area and the vibration parameters. With the experimental conditions used, the average mass-transfer coefficients are in the range of 2.8 - 14 x 10/sup -4/ cm/s, which represents an increase to 1.2 to 5 times the value for the average free-convective mass-transfer coefficient. A correlation similar to that derived from boundary-layer theory for forced convection over a flat plate is given for predicting the mass-transfer coefficient from the length of electrode active area and the vibration parameters.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.2124331</identifier><language>eng</language><publisher>United States</publisher><subject>400400 - Electrochemistry ; COPPER ; COPPER COMPOUNDS ; COPPER SULFATES ; CURRENTS ; ELECTRIC CURRENTS ; ELECTRODES ; ELEMENTS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIMITING VALUES ; MASS TRANSFER ; MECHANICAL VIBRATIONS ; METALS ; OXYGEN COMPOUNDS ; PLATES ; SULFATES ; SULFUR COMPOUNDS ; TRANSITION ELEMENT COMPOUNDS ; TRANSITION ELEMENTS</subject><ispartof>J. Electrochem. Soc.; (United States), 1982-09, Vol.129 (9), p.1955-1959</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-794bb11ff2622a77eed00694c47d7b053e5c86dca2cf97aeecf21ca4c96d29653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5559094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ming‐Biann</creatorcontrib><creatorcontrib>Rudnick, Elizabeth M.</creatorcontrib><creatorcontrib>Cook, G. M.</creatorcontrib><creatorcontrib>Yao, N. P.</creatorcontrib><creatorcontrib>Argonne National Lab., IL</creatorcontrib><title>Mass Transfer at Longitudinally Vibrating Vertical Electrodes</title><title>J. Electrochem. Soc.; (United States)</title><description>Experimental measurements of limiting currents were carried out to determine the increase in mass transfer rates as a result of longitudinal vibrations applied to vertical flat-plate electrodes. Three different lengths of the electrode active areas (1.27, 2.54 5.08 cm), three different vibration amplitudes (0.0572, 0.114, and 0.229 cm), and several different vibration frequencies (ranging from 13 to 36 Hz) were used in the experiments. The current is a sum of a small a-c current and a large d-c current. The a-c current profile, which has a phase lag of 90/sup 0/, depends on the location of the electrode active area and the vibration parameters. With the experimental conditions used, the average mass-transfer coefficients are in the range of 2.8 - 14 x 10/sup -4/ cm/s, which represents an increase to 1.2 to 5 times the value for the average free-convective mass-transfer coefficient. A correlation similar to that derived from boundary-layer theory for forced convection over a flat plate is given for predicting the mass-transfer coefficient from the length of electrode active area and the vibration parameters.</description><subject>400400 - Electrochemistry</subject><subject>COPPER</subject><subject>COPPER COMPOUNDS</subject><subject>COPPER SULFATES</subject><subject>CURRENTS</subject><subject>ELECTRIC CURRENTS</subject><subject>ELECTRODES</subject><subject>ELEMENTS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIMITING VALUES</subject><subject>MASS TRANSFER</subject><subject>MECHANICAL VIBRATIONS</subject><subject>METALS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PLATES</subject><subject>SULFATES</subject><subject>SULFUR COMPOUNDS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSITION ELEMENTS</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsL_8HgzsXUvHxMmoULKa0KI25qtyHzktTIOCNJXPTfO9KuLhcOl8sh5BboAkDoB1gwYIJzOCMz0ELWCgDOyYxS4LVoJFySq5y_pgpLoWbk8c3mXG2THXLwqbKlasdhH8uvi4Pt-0O1i12yJQ77audTiWj7at17LGl0Pl-Ti2D77G9OOScfm_V29VK378-vq6e2RiZFqZUWXQcQAmsYs0p57yhttEChnOqo5F7isnFoGQatrPcYGKAVqBvHdCP5nNwdd8dcoskYi8dPHIdhOmKklJpqMUH3RwjTmHPywfyk-G3TwQA1_3IMmJMc_gfsyVY4</recordid><startdate>19820901</startdate><enddate>19820901</enddate><creator>Liu, Ming‐Biann</creator><creator>Rudnick, Elizabeth M.</creator><creator>Cook, G. M.</creator><creator>Yao, N. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19820901</creationdate><title>Mass Transfer at Longitudinally Vibrating Vertical Electrodes</title><author>Liu, Ming‐Biann ; Rudnick, Elizabeth M. ; Cook, G. M. ; Yao, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-794bb11ff2622a77eed00694c47d7b053e5c86dca2cf97aeecf21ca4c96d29653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>400400 - Electrochemistry</topic><topic>COPPER</topic><topic>COPPER COMPOUNDS</topic><topic>COPPER SULFATES</topic><topic>CURRENTS</topic><topic>ELECTRIC CURRENTS</topic><topic>ELECTRODES</topic><topic>ELEMENTS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIMITING VALUES</topic><topic>MASS TRANSFER</topic><topic>MECHANICAL VIBRATIONS</topic><topic>METALS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PLATES</topic><topic>SULFATES</topic><topic>SULFUR COMPOUNDS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSITION ELEMENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ming‐Biann</creatorcontrib><creatorcontrib>Rudnick, Elizabeth M.</creatorcontrib><creatorcontrib>Cook, G. M.</creatorcontrib><creatorcontrib>Yao, N. P.</creatorcontrib><creatorcontrib>Argonne National Lab., IL</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Electrochem. Soc.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ming‐Biann</au><au>Rudnick, Elizabeth M.</au><au>Cook, G. M.</au><au>Yao, N. P.</au><aucorp>Argonne National Lab., IL</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass Transfer at Longitudinally Vibrating Vertical Electrodes</atitle><jtitle>J. Electrochem. Soc.; (United States)</jtitle><date>1982-09-01</date><risdate>1982</risdate><volume>129</volume><issue>9</issue><spage>1955</spage><epage>1959</epage><pages>1955-1959</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Experimental measurements of limiting currents were carried out to determine the increase in mass transfer rates as a result of longitudinal vibrations applied to vertical flat-plate electrodes. Three different lengths of the electrode active areas (1.27, 2.54 5.08 cm), three different vibration amplitudes (0.0572, 0.114, and 0.229 cm), and several different vibration frequencies (ranging from 13 to 36 Hz) were used in the experiments. The current is a sum of a small a-c current and a large d-c current. The a-c current profile, which has a phase lag of 90/sup 0/, depends on the location of the electrode active area and the vibration parameters. With the experimental conditions used, the average mass-transfer coefficients are in the range of 2.8 - 14 x 10/sup -4/ cm/s, which represents an increase to 1.2 to 5 times the value for the average free-convective mass-transfer coefficient. A correlation similar to that derived from boundary-layer theory for forced convection over a flat plate is given for predicting the mass-transfer coefficient from the length of electrode active area and the vibration parameters.</abstract><cop>United States</cop><doi>10.1149/1.2124331</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof J. Electrochem. Soc.; (United States), 1982-09, Vol.129 (9), p.1955-1959
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1_2124331
source Institute of Physics Journals
subjects 400400 - Electrochemistry
COPPER
COPPER COMPOUNDS
COPPER SULFATES
CURRENTS
ELECTRIC CURRENTS
ELECTRODES
ELEMENTS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LIMITING VALUES
MASS TRANSFER
MECHANICAL VIBRATIONS
METALS
OXYGEN COMPOUNDS
PLATES
SULFATES
SULFUR COMPOUNDS
TRANSITION ELEMENT COMPOUNDS
TRANSITION ELEMENTS
title Mass Transfer at Longitudinally Vibrating Vertical Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20Transfer%20at%20Longitudinally%20Vibrating%20Vertical%20Electrodes&rft.jtitle=J.%20Electrochem.%20Soc.;%20(United%20States)&rft.au=Liu,%20Ming%E2%80%90Biann&rft.aucorp=Argonne%20National%20Lab.,%20IL&rft.date=1982-09-01&rft.volume=129&rft.issue=9&rft.spage=1955&rft.epage=1959&rft.pages=1955-1959&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/1.2124331&rft_dat=%3Ccrossref_osti_%3E10_1149_1_2124331%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true