Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data

Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2024-11, Vol.171 (11), p.110534
Hauptverfasser: Méndez-Corbacho, Francisco J., Larrarte-Lizarralde, Beñat, Parra, Rubén, Larrain, Javier, del Olmo, Diego, Grande, Hans-Jürgen, Ayerbe, Elixabete
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 110534
container_title Journal of the Electrochemical Society
container_volume 171
creator Méndez-Corbacho, Francisco J.
Larrarte-Lizarralde, Beñat
Parra, Rubén
Larrain, Javier
del Olmo, Diego
Grande, Hans-Jürgen
Ayerbe, Elixabete
description Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.
doi_str_mv 10.1149/1945-7111/ad940a
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ad940a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad940a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-d5627fb0d23deb077eba5d22384dde0db155cb9ab4344275c5fd7c52e5f71c233</originalsourceid><addsrcrecordid>eNp1UE1PAyEQJUYTa_XukR8gFlgoXW9av5qs2qQajxsWWEvdLg2wNf33stZ48_TevJk3M3kAnBN8SQjLRyRnHAlCyEjqnGF5AAZ_0iEYYEwyxMacHIOTEFapJBMmBmA7X-6CVQHN2tr5tdHw2XReNgnil_OfASYZPjltGtt-wMIi61p4I2M03ppwBReu2faduDRwkUhj4Fz6aFUiPzb4buPSdREWsjJNOnArozwFR7Vsgjn7xSF4u797nT6i4uVhNr0ukKKYR6T5mIq6wppm2lRYCFNJrinNJkxrg3VFOFdVLiuWMUYFV7zWQnFqeC2Iolk2BHi_V3kXgjd1ufF2Lf2uJLjscyv7kMo-pHKfW7Jc7C3WbcqV63ybHvx__Bsd_XA1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</title><source>IOP Publishing Journals</source><creator>Méndez-Corbacho, Francisco J. ; Larrarte-Lizarralde, Beñat ; Parra, Rubén ; Larrain, Javier ; del Olmo, Diego ; Grande, Hans-Jürgen ; Ayerbe, Elixabete</creator><creatorcontrib>Méndez-Corbacho, Francisco J. ; Larrarte-Lizarralde, Beñat ; Parra, Rubén ; Larrain, Javier ; del Olmo, Diego ; Grande, Hans-Jürgen ; Ayerbe, Elixabete</creatorcontrib><description>Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad940a</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Batteries ; Batteries—Li-ion ; High-fidelity models ; Machine Learning ; PINN ; SPM Model</subject><ispartof>Journal of the Electrochemical Society, 2024-11, Vol.171 (11), p.110534</ispartof><rights>2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-d5627fb0d23deb077eba5d22384dde0db155cb9ab4344275c5fd7c52e5f71c233</cites><orcidid>0009-0001-4620-475X ; 0000-0003-4092-2088 ; 0000-0003-2965-4705 ; 0000-0002-7637-7897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad940a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827</link.rule.ids></links><search><creatorcontrib>Méndez-Corbacho, Francisco J.</creatorcontrib><creatorcontrib>Larrarte-Lizarralde, Beñat</creatorcontrib><creatorcontrib>Parra, Rubén</creatorcontrib><creatorcontrib>Larrain, Javier</creatorcontrib><creatorcontrib>del Olmo, Diego</creatorcontrib><creatorcontrib>Grande, Hans-Jürgen</creatorcontrib><creatorcontrib>Ayerbe, Elixabete</creatorcontrib><title>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.</description><subject>Batteries</subject><subject>Batteries—Li-ion</subject><subject>High-fidelity models</subject><subject>Machine Learning</subject><subject>PINN</subject><subject>SPM Model</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1PAyEQJUYTa_XukR8gFlgoXW9av5qs2qQajxsWWEvdLg2wNf33stZ48_TevJk3M3kAnBN8SQjLRyRnHAlCyEjqnGF5AAZ_0iEYYEwyxMacHIOTEFapJBMmBmA7X-6CVQHN2tr5tdHw2XReNgnil_OfASYZPjltGtt-wMIi61p4I2M03ppwBReu2faduDRwkUhj4Fz6aFUiPzb4buPSdREWsjJNOnArozwFR7Vsgjn7xSF4u797nT6i4uVhNr0ukKKYR6T5mIq6wppm2lRYCFNJrinNJkxrg3VFOFdVLiuWMUYFV7zWQnFqeC2Iolk2BHi_V3kXgjd1ufF2Lf2uJLjscyv7kMo-pHKfW7Jc7C3WbcqV63ybHvx__Bsd_XA1</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Méndez-Corbacho, Francisco J.</creator><creator>Larrarte-Lizarralde, Beñat</creator><creator>Parra, Rubén</creator><creator>Larrain, Javier</creator><creator>del Olmo, Diego</creator><creator>Grande, Hans-Jürgen</creator><creator>Ayerbe, Elixabete</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-4620-475X</orcidid><orcidid>https://orcid.org/0000-0003-4092-2088</orcidid><orcidid>https://orcid.org/0000-0003-2965-4705</orcidid><orcidid>https://orcid.org/0000-0002-7637-7897</orcidid></search><sort><creationdate>20241101</creationdate><title>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</title><author>Méndez-Corbacho, Francisco J. ; Larrarte-Lizarralde, Beñat ; Parra, Rubén ; Larrain, Javier ; del Olmo, Diego ; Grande, Hans-Jürgen ; Ayerbe, Elixabete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-d5627fb0d23deb077eba5d22384dde0db155cb9ab4344275c5fd7c52e5f71c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Batteries—Li-ion</topic><topic>High-fidelity models</topic><topic>Machine Learning</topic><topic>PINN</topic><topic>SPM Model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez-Corbacho, Francisco J.</creatorcontrib><creatorcontrib>Larrarte-Lizarralde, Beñat</creatorcontrib><creatorcontrib>Parra, Rubén</creatorcontrib><creatorcontrib>Larrain, Javier</creatorcontrib><creatorcontrib>del Olmo, Diego</creatorcontrib><creatorcontrib>Grande, Hans-Jürgen</creatorcontrib><creatorcontrib>Ayerbe, Elixabete</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez-Corbacho, Francisco J.</au><au>Larrarte-Lizarralde, Beñat</au><au>Parra, Rubén</au><au>Larrain, Javier</au><au>del Olmo, Diego</au><au>Grande, Hans-Jürgen</au><au>Ayerbe, Elixabete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>171</volume><issue>11</issue><spage>110534</spage><pages>110534-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad940a</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-4620-475X</orcidid><orcidid>https://orcid.org/0000-0003-4092-2088</orcidid><orcidid>https://orcid.org/0000-0003-2965-4705</orcidid><orcidid>https://orcid.org/0000-0002-7637-7897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2024-11, Vol.171 (11), p.110534
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1945_7111_ad940a
source IOP Publishing Journals
subjects Batteries
Batteries—Li-ion
High-fidelity models
Machine Learning
PINN
SPM Model
title Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Neural%20Networks%20for%20Modeling%20Li-ion%20Batteries:%20Solving%20the%20Single%20Particle%20Model%20Without%20Labeled%20Data&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=M%C3%A9ndez-Corbacho,%20Francisco%20J.&rft.date=2024-11-01&rft.volume=171&rft.issue=11&rft.spage=110534&rft.pages=110534-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad940a&rft_dat=%3Ciop_cross%3Ejesad940a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true