Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data
Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, th...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2024-11, Vol.171 (11), p.110534 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 110534 |
container_title | Journal of the Electrochemical Society |
container_volume | 171 |
creator | Méndez-Corbacho, Francisco J. Larrarte-Lizarralde, Beñat Parra, Rubén Larrain, Javier del Olmo, Diego Grande, Hans-Jürgen Ayerbe, Elixabete |
description | Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices. |
doi_str_mv | 10.1149/1945-7111/ad940a |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ad940a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad940a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-d5627fb0d23deb077eba5d22384dde0db155cb9ab4344275c5fd7c52e5f71c233</originalsourceid><addsrcrecordid>eNp1UE1PAyEQJUYTa_XukR8gFlgoXW9av5qs2qQajxsWWEvdLg2wNf33stZ48_TevJk3M3kAnBN8SQjLRyRnHAlCyEjqnGF5AAZ_0iEYYEwyxMacHIOTEFapJBMmBmA7X-6CVQHN2tr5tdHw2XReNgnil_OfASYZPjltGtt-wMIi61p4I2M03ppwBReu2faduDRwkUhj4Fz6aFUiPzb4buPSdREWsjJNOnArozwFR7Vsgjn7xSF4u797nT6i4uVhNr0ukKKYR6T5mIq6wppm2lRYCFNJrinNJkxrg3VFOFdVLiuWMUYFV7zWQnFqeC2Iolk2BHi_V3kXgjd1ufF2Lf2uJLjscyv7kMo-pHKfW7Jc7C3WbcqV63ybHvx__Bsd_XA1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</title><source>IOP Publishing Journals</source><creator>Méndez-Corbacho, Francisco J. ; Larrarte-Lizarralde, Beñat ; Parra, Rubén ; Larrain, Javier ; del Olmo, Diego ; Grande, Hans-Jürgen ; Ayerbe, Elixabete</creator><creatorcontrib>Méndez-Corbacho, Francisco J. ; Larrarte-Lizarralde, Beñat ; Parra, Rubén ; Larrain, Javier ; del Olmo, Diego ; Grande, Hans-Jürgen ; Ayerbe, Elixabete</creatorcontrib><description>Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad940a</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Batteries ; Batteries—Li-ion ; High-fidelity models ; Machine Learning ; PINN ; SPM Model</subject><ispartof>Journal of the Electrochemical Society, 2024-11, Vol.171 (11), p.110534</ispartof><rights>2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-d5627fb0d23deb077eba5d22384dde0db155cb9ab4344275c5fd7c52e5f71c233</cites><orcidid>0009-0001-4620-475X ; 0000-0003-4092-2088 ; 0000-0003-2965-4705 ; 0000-0002-7637-7897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad940a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827</link.rule.ids></links><search><creatorcontrib>Méndez-Corbacho, Francisco J.</creatorcontrib><creatorcontrib>Larrarte-Lizarralde, Beñat</creatorcontrib><creatorcontrib>Parra, Rubén</creatorcontrib><creatorcontrib>Larrain, Javier</creatorcontrib><creatorcontrib>del Olmo, Diego</creatorcontrib><creatorcontrib>Grande, Hans-Jürgen</creatorcontrib><creatorcontrib>Ayerbe, Elixabete</creatorcontrib><title>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.</description><subject>Batteries</subject><subject>Batteries—Li-ion</subject><subject>High-fidelity models</subject><subject>Machine Learning</subject><subject>PINN</subject><subject>SPM Model</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1PAyEQJUYTa_XukR8gFlgoXW9av5qs2qQajxsWWEvdLg2wNf33stZ48_TevJk3M3kAnBN8SQjLRyRnHAlCyEjqnGF5AAZ_0iEYYEwyxMacHIOTEFapJBMmBmA7X-6CVQHN2tr5tdHw2XReNgnil_OfASYZPjltGtt-wMIi61p4I2M03ppwBReu2faduDRwkUhj4Fz6aFUiPzb4buPSdREWsjJNOnArozwFR7Vsgjn7xSF4u797nT6i4uVhNr0ukKKYR6T5mIq6wppm2lRYCFNJrinNJkxrg3VFOFdVLiuWMUYFV7zWQnFqeC2Iolk2BHi_V3kXgjd1ufF2Lf2uJLjscyv7kMo-pHKfW7Jc7C3WbcqV63ybHvx__Bsd_XA1</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Méndez-Corbacho, Francisco J.</creator><creator>Larrarte-Lizarralde, Beñat</creator><creator>Parra, Rubén</creator><creator>Larrain, Javier</creator><creator>del Olmo, Diego</creator><creator>Grande, Hans-Jürgen</creator><creator>Ayerbe, Elixabete</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-4620-475X</orcidid><orcidid>https://orcid.org/0000-0003-4092-2088</orcidid><orcidid>https://orcid.org/0000-0003-2965-4705</orcidid><orcidid>https://orcid.org/0000-0002-7637-7897</orcidid></search><sort><creationdate>20241101</creationdate><title>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</title><author>Méndez-Corbacho, Francisco J. ; Larrarte-Lizarralde, Beñat ; Parra, Rubén ; Larrain, Javier ; del Olmo, Diego ; Grande, Hans-Jürgen ; Ayerbe, Elixabete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-d5627fb0d23deb077eba5d22384dde0db155cb9ab4344275c5fd7c52e5f71c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Batteries—Li-ion</topic><topic>High-fidelity models</topic><topic>Machine Learning</topic><topic>PINN</topic><topic>SPM Model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez-Corbacho, Francisco J.</creatorcontrib><creatorcontrib>Larrarte-Lizarralde, Beñat</creatorcontrib><creatorcontrib>Parra, Rubén</creatorcontrib><creatorcontrib>Larrain, Javier</creatorcontrib><creatorcontrib>del Olmo, Diego</creatorcontrib><creatorcontrib>Grande, Hans-Jürgen</creatorcontrib><creatorcontrib>Ayerbe, Elixabete</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez-Corbacho, Francisco J.</au><au>Larrarte-Lizarralde, Beñat</au><au>Parra, Rubén</au><au>Larrain, Javier</au><au>del Olmo, Diego</au><au>Grande, Hans-Jürgen</au><au>Ayerbe, Elixabete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>171</volume><issue>11</issue><spage>110534</spage><pages>110534-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Li-ion batteries are garnering significant attention due to the electrification of critical sectors. High-fidelity battery cell models have proven effective in assessing performance and optimizing design, alleviating the financial burden associated with extensive experimental procedures. However, the computational costs associated with such simulations can become prohibitive, particularly when numerous iterations are required or when integration into small devices, such as battery management systems, is necessary. To address these challenges and provide an alternative to traditional methods such as finite element and finite volume solvers, we propose the development of an algorithm that utilizes Physics-Informed Neural Networks (PINNs) to solve the Single Particle Model across multiple parameter ranges. A notable advantage of this machine learning approach is its capacity to generate competitive solutions post-training by relying solely on the governing equations, without the necessity for experimental or simulation data. Additionally, the lightweight nature of the model indicates its potential for embedding within small-scale devices.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad940a</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-4620-475X</orcidid><orcidid>https://orcid.org/0000-0003-4092-2088</orcidid><orcidid>https://orcid.org/0000-0003-2965-4705</orcidid><orcidid>https://orcid.org/0000-0002-7637-7897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2024-11, Vol.171 (11), p.110534 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_1945_7111_ad940a |
source | IOP Publishing Journals |
subjects | Batteries Batteries—Li-ion High-fidelity models Machine Learning PINN SPM Model |
title | Physics-Informed Neural Networks for Modeling Li-ion Batteries: Solving the Single Particle Model Without Labeled Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Neural%20Networks%20for%20Modeling%20Li-ion%20Batteries:%20Solving%20the%20Single%20Particle%20Model%20Without%20Labeled%20Data&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=M%C3%A9ndez-Corbacho,%20Francisco%20J.&rft.date=2024-11-01&rft.volume=171&rft.issue=11&rft.spage=110534&rft.pages=110534-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad940a&rft_dat=%3Ciop_cross%3Ejesad940a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |