Enhanced Porous Electrode Theory Based Electrochemical Model for Higher Fidelity Modelling and Deciphering of the EIS Spectra
Electrochemical impedance spectroscopy (EIS) is essential for non-invasive battery characterization. This paper addresses the challenge of adequate interpretation of EIS spectra, which are often complicated by overlapping internal phenomena occurring on similar time scales. We present, for the first...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2024-08, Vol.171 (8) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of the Electrochemical Society |
container_volume | 171 |
creator | Mele, Igor Zelič, Klemen Firm, Marko Moškon, Jože Gaberšček, Miran Katrašnik, Tomaž |
description | Electrochemical impedance spectroscopy (EIS) is essential for non-invasive battery characterization. This paper addresses the challenge of adequate interpretation of EIS spectra, which are often complicated by overlapping internal phenomena occurring on similar time scales. We present, for the first time, a high-fidelity numerical time-domain electrochemical model that can virtually replicate experimental EIS spectra with three superimposed high-frequency semicircles, a transition to the diffusion tail at elevated imaginary values, and a tilted diffusion tail at low frequencies. These advanced features were made possible by extending state-of-the-art porous electrode model with innovative sub-models for the double layer phenomenon at the carbon black/electrolyte and metal Li-anode/electrolyte interfaces, and transport phenomena of charged species through the solid electrolyte interphase at the Li-anode interface. Additionally, we modelled the diffusion tail inclination by introducing representative active particles of varying sizes. Results from custom-made half-cells confirm the model's ability to decipher EIS spectra more accurately compared to existing models. Moreover, innovative physics-based battery model that is capable of accurately modelling intra-cell phenomena can reveal internal states and physical parameters of batteries using measured EIS spectra. The model, therefore, also enables functionality of an advanced virtual sensor, which is an important diagnostics feature in next-generation battery management systems. |
doi_str_mv | 10.1149/1945-7111/ad6eb9 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ad6eb9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesad6eb9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-3dc9b10086421ebcc204a15ae32a85a05cac7d069ec0c1c6dc886ff0092dc3b63</originalsourceid><addsrcrecordid>eNp1ULtOwzAUtRBIlMLO6A8g1DcPNxmhpLRSEUgts-VcO42rNI6cdOjAv-MoFRvT1Xnq6hDyCOwZIM5mkMVJMAeAmVRcF9kVmfxR12TCGERBzBO4JXddd_AQ0ng-IT95U8kGtaJf1tlTR_NaY--s0nRXaevO9FV2Xr3QWOmjQVnTD--oaWkdXZl9pR1dGk-Y_jwqtWn2VDaKvmk0rdcHbEvaV5rm6y3dtkOdvCc3paw7_XC5U_K9zHeLVbD5fF8vXjYBhizpg0hhVgBjKY9D0AV6NpaQSB2FMk0kS1DiXDGeaWQIyBWmKS9LxrJQYVTwaErY2IvOdp3TpWidOUp3FsDEMJ8YthLDVmKcz0eexoixrTjYk2v8g__bfwG_iXMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Porous Electrode Theory Based Electrochemical Model for Higher Fidelity Modelling and Deciphering of the EIS Spectra</title><source>IOP Publishing Journals</source><creator>Mele, Igor ; Zelič, Klemen ; Firm, Marko ; Moškon, Jože ; Gaberšček, Miran ; Katrašnik, Tomaž</creator><creatorcontrib>Mele, Igor ; Zelič, Klemen ; Firm, Marko ; Moškon, Jože ; Gaberšček, Miran ; Katrašnik, Tomaž</creatorcontrib><description>Electrochemical impedance spectroscopy (EIS) is essential for non-invasive battery characterization. This paper addresses the challenge of adequate interpretation of EIS spectra, which are often complicated by overlapping internal phenomena occurring on similar time scales. We present, for the first time, a high-fidelity numerical time-domain electrochemical model that can virtually replicate experimental EIS spectra with three superimposed high-frequency semicircles, a transition to the diffusion tail at elevated imaginary values, and a tilted diffusion tail at low frequencies. These advanced features were made possible by extending state-of-the-art porous electrode model with innovative sub-models for the double layer phenomenon at the carbon black/electrolyte and metal Li-anode/electrolyte interfaces, and transport phenomena of charged species through the solid electrolyte interphase at the Li-anode interface. Additionally, we modelled the diffusion tail inclination by introducing representative active particles of varying sizes. Results from custom-made half-cells confirm the model's ability to decipher EIS spectra more accurately compared to existing models. Moreover, innovative physics-based battery model that is capable of accurately modelling intra-cell phenomena can reveal internal states and physical parameters of batteries using measured EIS spectra. The model, therefore, also enables functionality of an advanced virtual sensor, which is an important diagnostics feature in next-generation battery management systems.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ad6eb9</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>deciphering EIS spectra ; electrochemical impedance spectroscopy ; electrochemical model ; Li-ion battery modelling ; NMC</subject><ispartof>Journal of the Electrochemical Society, 2024-08, Vol.171 (8)</ispartof><rights>2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9071-7325 ; 0000-0002-8104-1693 ; 0000-0002-8223-0031 ; 0000-0001-6954-4936 ; 0000-0003-1281-5218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ad6eb9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Mele, Igor</creatorcontrib><creatorcontrib>Zelič, Klemen</creatorcontrib><creatorcontrib>Firm, Marko</creatorcontrib><creatorcontrib>Moškon, Jože</creatorcontrib><creatorcontrib>Gaberšček, Miran</creatorcontrib><creatorcontrib>Katrašnik, Tomaž</creatorcontrib><title>Enhanced Porous Electrode Theory Based Electrochemical Model for Higher Fidelity Modelling and Deciphering of the EIS Spectra</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Electrochemical impedance spectroscopy (EIS) is essential for non-invasive battery characterization. This paper addresses the challenge of adequate interpretation of EIS spectra, which are often complicated by overlapping internal phenomena occurring on similar time scales. We present, for the first time, a high-fidelity numerical time-domain electrochemical model that can virtually replicate experimental EIS spectra with three superimposed high-frequency semicircles, a transition to the diffusion tail at elevated imaginary values, and a tilted diffusion tail at low frequencies. These advanced features were made possible by extending state-of-the-art porous electrode model with innovative sub-models for the double layer phenomenon at the carbon black/electrolyte and metal Li-anode/electrolyte interfaces, and transport phenomena of charged species through the solid electrolyte interphase at the Li-anode interface. Additionally, we modelled the diffusion tail inclination by introducing representative active particles of varying sizes. Results from custom-made half-cells confirm the model's ability to decipher EIS spectra more accurately compared to existing models. Moreover, innovative physics-based battery model that is capable of accurately modelling intra-cell phenomena can reveal internal states and physical parameters of batteries using measured EIS spectra. The model, therefore, also enables functionality of an advanced virtual sensor, which is an important diagnostics feature in next-generation battery management systems.</description><subject>deciphering EIS spectra</subject><subject>electrochemical impedance spectroscopy</subject><subject>electrochemical model</subject><subject>Li-ion battery modelling</subject><subject>NMC</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1ULtOwzAUtRBIlMLO6A8g1DcPNxmhpLRSEUgts-VcO42rNI6cdOjAv-MoFRvT1Xnq6hDyCOwZIM5mkMVJMAeAmVRcF9kVmfxR12TCGERBzBO4JXddd_AQ0ng-IT95U8kGtaJf1tlTR_NaY--s0nRXaevO9FV2Xr3QWOmjQVnTD--oaWkdXZl9pR1dGk-Y_jwqtWn2VDaKvmk0rdcHbEvaV5rm6y3dtkOdvCc3paw7_XC5U_K9zHeLVbD5fF8vXjYBhizpg0hhVgBjKY9D0AV6NpaQSB2FMk0kS1DiXDGeaWQIyBWmKS9LxrJQYVTwaErY2IvOdp3TpWidOUp3FsDEMJ8YthLDVmKcz0eexoixrTjYk2v8g__bfwG_iXMg</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Mele, Igor</creator><creator>Zelič, Klemen</creator><creator>Firm, Marko</creator><creator>Moškon, Jože</creator><creator>Gaberšček, Miran</creator><creator>Katrašnik, Tomaž</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9071-7325</orcidid><orcidid>https://orcid.org/0000-0002-8104-1693</orcidid><orcidid>https://orcid.org/0000-0002-8223-0031</orcidid><orcidid>https://orcid.org/0000-0001-6954-4936</orcidid><orcidid>https://orcid.org/0000-0003-1281-5218</orcidid></search><sort><creationdate>20240827</creationdate><title>Enhanced Porous Electrode Theory Based Electrochemical Model for Higher Fidelity Modelling and Deciphering of the EIS Spectra</title><author>Mele, Igor ; Zelič, Klemen ; Firm, Marko ; Moškon, Jože ; Gaberšček, Miran ; Katrašnik, Tomaž</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-3dc9b10086421ebcc204a15ae32a85a05cac7d069ec0c1c6dc886ff0092dc3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deciphering EIS spectra</topic><topic>electrochemical impedance spectroscopy</topic><topic>electrochemical model</topic><topic>Li-ion battery modelling</topic><topic>NMC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mele, Igor</creatorcontrib><creatorcontrib>Zelič, Klemen</creatorcontrib><creatorcontrib>Firm, Marko</creatorcontrib><creatorcontrib>Moškon, Jože</creatorcontrib><creatorcontrib>Gaberšček, Miran</creatorcontrib><creatorcontrib>Katrašnik, Tomaž</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mele, Igor</au><au>Zelič, Klemen</au><au>Firm, Marko</au><au>Moškon, Jože</au><au>Gaberšček, Miran</au><au>Katrašnik, Tomaž</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Porous Electrode Theory Based Electrochemical Model for Higher Fidelity Modelling and Deciphering of the EIS Spectra</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>171</volume><issue>8</issue><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Electrochemical impedance spectroscopy (EIS) is essential for non-invasive battery characterization. This paper addresses the challenge of adequate interpretation of EIS spectra, which are often complicated by overlapping internal phenomena occurring on similar time scales. We present, for the first time, a high-fidelity numerical time-domain electrochemical model that can virtually replicate experimental EIS spectra with three superimposed high-frequency semicircles, a transition to the diffusion tail at elevated imaginary values, and a tilted diffusion tail at low frequencies. These advanced features were made possible by extending state-of-the-art porous electrode model with innovative sub-models for the double layer phenomenon at the carbon black/electrolyte and metal Li-anode/electrolyte interfaces, and transport phenomena of charged species through the solid electrolyte interphase at the Li-anode interface. Additionally, we modelled the diffusion tail inclination by introducing representative active particles of varying sizes. Results from custom-made half-cells confirm the model's ability to decipher EIS spectra more accurately compared to existing models. Moreover, innovative physics-based battery model that is capable of accurately modelling intra-cell phenomena can reveal internal states and physical parameters of batteries using measured EIS spectra. The model, therefore, also enables functionality of an advanced virtual sensor, which is an important diagnostics feature in next-generation battery management systems.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ad6eb9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9071-7325</orcidid><orcidid>https://orcid.org/0000-0002-8104-1693</orcidid><orcidid>https://orcid.org/0000-0002-8223-0031</orcidid><orcidid>https://orcid.org/0000-0001-6954-4936</orcidid><orcidid>https://orcid.org/0000-0003-1281-5218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2024-08, Vol.171 (8) |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_1945_7111_ad6eb9 |
source | IOP Publishing Journals |
subjects | deciphering EIS spectra electrochemical impedance spectroscopy electrochemical model Li-ion battery modelling NMC |
title | Enhanced Porous Electrode Theory Based Electrochemical Model for Higher Fidelity Modelling and Deciphering of the EIS Spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Porous%20Electrode%20Theory%20Based%20Electrochemical%20Model%20for%20Higher%20Fidelity%20Modelling%20and%20Deciphering%20of%20the%20EIS%20Spectra&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Mele,%20Igor&rft.date=2024-08-27&rft.volume=171&rft.issue=8&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ad6eb9&rft_dat=%3Ciop_cross%3Ejesad6eb9%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |