Melt Synthesis of Lithium Manganese Iron Phosphate: Part II. Particle Size, Electrochemical Performance, and Solid-State Lithium Diffusion

Melt synthesis is a fast and simple process to make dense LiMn y Fe 1−y PO 4 (LMFP with 0 ≤ y ≤ 1) from all-dry, low-cost precursors with zero waste. Part one of this study confirmed that highly crystalline and phase pure LMFP materials can be made by melt synthesis. This part shows that planetary m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2022-06, Vol.169 (6), p.60527
Hauptverfasser: Lyle, Erin, Vaeli, Ron, Cormier, Marc, Metzger, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 60527
container_title Journal of the Electrochemical Society
container_volume 169
creator Lyle, Erin
Vaeli, Ron
Cormier, Marc
Metzger, Michael
description Melt synthesis is a fast and simple process to make dense LiMn y Fe 1−y PO 4 (LMFP with 0 ≤ y ≤ 1) from all-dry, low-cost precursors with zero waste. Part one of this study confirmed that highly crystalline and phase pure LMFP materials can be made by melt synthesis. This part shows that planetary milling can reduce the primary particle size of melt LMFP (0%–75% Mn) to ∼200 nm, which is smaller than the primary particles in commercial LFP reference material (0% Mn). However, further particle size reduction is needed to reach particle sizes below 70 nm observed in reference LMFP (79% Mn). Melt LFP shows almost identical specific capacity and charge/discharge voltage as reference LFP. Melt LMFP materials show a high voltage Mn plateau at ∼4 V associated with the Mn 2+/3+ redox, the length of which scales with Mn content. The Mn plateau raises the average discharge voltage of LMFP; hence a minimum specific discharge capacity between 160 mAh g −1 (0% Mn) and 145 mAh g −1 (80% Mn) is sufficient to match the volumetric energy density of LFP. The Atlung Method for Intercalant Diffusion shows that the lithium diffusion coefficient in LMFP is ∼1 order of magnitude higher in the voltage region of the Fe 2+/3+ redox couple (3.75–3.1 V vs Li + /Li) than in the voltage region of the Mn 2+/3+ redox couple (4.3–3.75 V vs Li + /Li). This emphasizes the need for very small primary particles when making LMFP with relatively high Mn content.
doi_str_mv 10.1149/1945-7111/ac76e5
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ac76e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesac76e5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-56df1690610d4468d80c52e801c8cc95dadaee125763b72c467385da1e201ec73</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMLO6JGhaX1J7CRsCApEakWlwGwZ50JcJXFlp0P5BL6alKJOiOnu3r337vQIuQY2BYizGWQxDxIAmCmdCOQnZHSETsmIMYiCWHA4Jxfer4cR0jgZka8lNj0tdl1fozee2oouTF-bbUuXqvtQHXqkubMdXdXWb2rV4y1dKdfTPJ_-NEY3SAvziRM6b1D3zuoaW6NVQ1foKuta1elhqbqSFrYxZVD0g8vxzIOpqq03trskZ5VqPF791jF5e5y_3j8Hi5en_P5uEegw5X3ARVmByJgAVsaxSMuUaR5iykCnWme8VKVChJAnInpPQh2LJEoHFDBkgDqJxoQdfLWz3jus5MaZVrmdBCb3Wcp9cHIfnDxkOUgmB4mxG7m2W9cND_5Hv_mDvsZBIjIpJBOMh4nclFX0DaCkg-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Melt Synthesis of Lithium Manganese Iron Phosphate: Part II. Particle Size, Electrochemical Performance, and Solid-State Lithium Diffusion</title><source>IOP Publishing Journals</source><creator>Lyle, Erin ; Vaeli, Ron ; Cormier, Marc ; Metzger, Michael</creator><creatorcontrib>Lyle, Erin ; Vaeli, Ron ; Cormier, Marc ; Metzger, Michael</creatorcontrib><description>Melt synthesis is a fast and simple process to make dense LiMn y Fe 1−y PO 4 (LMFP with 0 ≤ y ≤ 1) from all-dry, low-cost precursors with zero waste. Part one of this study confirmed that highly crystalline and phase pure LMFP materials can be made by melt synthesis. This part shows that planetary milling can reduce the primary particle size of melt LMFP (0%–75% Mn) to ∼200 nm, which is smaller than the primary particles in commercial LFP reference material (0% Mn). However, further particle size reduction is needed to reach particle sizes below 70 nm observed in reference LMFP (79% Mn). Melt LFP shows almost identical specific capacity and charge/discharge voltage as reference LFP. Melt LMFP materials show a high voltage Mn plateau at ∼4 V associated with the Mn 2+/3+ redox, the length of which scales with Mn content. The Mn plateau raises the average discharge voltage of LMFP; hence a minimum specific discharge capacity between 160 mAh g −1 (0% Mn) and 145 mAh g −1 (80% Mn) is sufficient to match the volumetric energy density of LFP. The Atlung Method for Intercalant Diffusion shows that the lithium diffusion coefficient in LMFP is ∼1 order of magnitude higher in the voltage region of the Fe 2+/3+ redox couple (3.75–3.1 V vs Li + /Li) than in the voltage region of the Mn 2+/3+ redox couple (4.3–3.75 V vs Li + /Li). This emphasizes the need for very small primary particles when making LMFP with relatively high Mn content.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ac76e5</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Journal of the Electrochemical Society, 2022-06, Vol.169 (6), p.60527</ispartof><rights>2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-56df1690610d4468d80c52e801c8cc95dadaee125763b72c467385da1e201ec73</citedby><cites>FETCH-LOGICAL-c285t-56df1690610d4468d80c52e801c8cc95dadaee125763b72c467385da1e201ec73</cites><orcidid>0000-0003-0067-4278 ; 0000-0002-5512-8541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ac76e5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Lyle, Erin</creatorcontrib><creatorcontrib>Vaeli, Ron</creatorcontrib><creatorcontrib>Cormier, Marc</creatorcontrib><creatorcontrib>Metzger, Michael</creatorcontrib><title>Melt Synthesis of Lithium Manganese Iron Phosphate: Part II. Particle Size, Electrochemical Performance, and Solid-State Lithium Diffusion</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Melt synthesis is a fast and simple process to make dense LiMn y Fe 1−y PO 4 (LMFP with 0 ≤ y ≤ 1) from all-dry, low-cost precursors with zero waste. Part one of this study confirmed that highly crystalline and phase pure LMFP materials can be made by melt synthesis. This part shows that planetary milling can reduce the primary particle size of melt LMFP (0%–75% Mn) to ∼200 nm, which is smaller than the primary particles in commercial LFP reference material (0% Mn). However, further particle size reduction is needed to reach particle sizes below 70 nm observed in reference LMFP (79% Mn). Melt LFP shows almost identical specific capacity and charge/discharge voltage as reference LFP. Melt LMFP materials show a high voltage Mn plateau at ∼4 V associated with the Mn 2+/3+ redox, the length of which scales with Mn content. The Mn plateau raises the average discharge voltage of LMFP; hence a minimum specific discharge capacity between 160 mAh g −1 (0% Mn) and 145 mAh g −1 (80% Mn) is sufficient to match the volumetric energy density of LFP. The Atlung Method for Intercalant Diffusion shows that the lithium diffusion coefficient in LMFP is ∼1 order of magnitude higher in the voltage region of the Fe 2+/3+ redox couple (3.75–3.1 V vs Li + /Li) than in the voltage region of the Mn 2+/3+ redox couple (4.3–3.75 V vs Li + /Li). This emphasizes the need for very small primary particles when making LMFP with relatively high Mn content.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9ULFOwzAQtRBIlMLO6JGhaX1J7CRsCApEakWlwGwZ50JcJXFlp0P5BL6alKJOiOnu3r337vQIuQY2BYizGWQxDxIAmCmdCOQnZHSETsmIMYiCWHA4Jxfer4cR0jgZka8lNj0tdl1fozee2oouTF-bbUuXqvtQHXqkubMdXdXWb2rV4y1dKdfTPJ_-NEY3SAvziRM6b1D3zuoaW6NVQ1foKuta1elhqbqSFrYxZVD0g8vxzIOpqq03trskZ5VqPF791jF5e5y_3j8Hi5en_P5uEegw5X3ARVmByJgAVsaxSMuUaR5iykCnWme8VKVChJAnInpPQh2LJEoHFDBkgDqJxoQdfLWz3jus5MaZVrmdBCb3Wcp9cHIfnDxkOUgmB4mxG7m2W9cND_5Hv_mDvsZBIjIpJBOMh4nclFX0DaCkg-E</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lyle, Erin</creator><creator>Vaeli, Ron</creator><creator>Cormier, Marc</creator><creator>Metzger, Michael</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0067-4278</orcidid><orcidid>https://orcid.org/0000-0002-5512-8541</orcidid></search><sort><creationdate>20220601</creationdate><title>Melt Synthesis of Lithium Manganese Iron Phosphate: Part II. Particle Size, Electrochemical Performance, and Solid-State Lithium Diffusion</title><author>Lyle, Erin ; Vaeli, Ron ; Cormier, Marc ; Metzger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-56df1690610d4468d80c52e801c8cc95dadaee125763b72c467385da1e201ec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyle, Erin</creatorcontrib><creatorcontrib>Vaeli, Ron</creatorcontrib><creatorcontrib>Cormier, Marc</creatorcontrib><creatorcontrib>Metzger, Michael</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyle, Erin</au><au>Vaeli, Ron</au><au>Cormier, Marc</au><au>Metzger, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melt Synthesis of Lithium Manganese Iron Phosphate: Part II. Particle Size, Electrochemical Performance, and Solid-State Lithium Diffusion</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>169</volume><issue>6</issue><spage>60527</spage><pages>60527-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Melt synthesis is a fast and simple process to make dense LiMn y Fe 1−y PO 4 (LMFP with 0 ≤ y ≤ 1) from all-dry, low-cost precursors with zero waste. Part one of this study confirmed that highly crystalline and phase pure LMFP materials can be made by melt synthesis. This part shows that planetary milling can reduce the primary particle size of melt LMFP (0%–75% Mn) to ∼200 nm, which is smaller than the primary particles in commercial LFP reference material (0% Mn). However, further particle size reduction is needed to reach particle sizes below 70 nm observed in reference LMFP (79% Mn). Melt LFP shows almost identical specific capacity and charge/discharge voltage as reference LFP. Melt LMFP materials show a high voltage Mn plateau at ∼4 V associated with the Mn 2+/3+ redox, the length of which scales with Mn content. The Mn plateau raises the average discharge voltage of LMFP; hence a minimum specific discharge capacity between 160 mAh g −1 (0% Mn) and 145 mAh g −1 (80% Mn) is sufficient to match the volumetric energy density of LFP. The Atlung Method for Intercalant Diffusion shows that the lithium diffusion coefficient in LMFP is ∼1 order of magnitude higher in the voltage region of the Fe 2+/3+ redox couple (3.75–3.1 V vs Li + /Li) than in the voltage region of the Mn 2+/3+ redox couple (4.3–3.75 V vs Li + /Li). This emphasizes the need for very small primary particles when making LMFP with relatively high Mn content.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ac76e5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0067-4278</orcidid><orcidid>https://orcid.org/0000-0002-5512-8541</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2022-06, Vol.169 (6), p.60527
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1945_7111_ac76e5
source IOP Publishing Journals
title Melt Synthesis of Lithium Manganese Iron Phosphate: Part II. Particle Size, Electrochemical Performance, and Solid-State Lithium Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melt%20Synthesis%20of%20Lithium%20Manganese%20Iron%20Phosphate:%20Part%20II.%20Particle%20Size,%20Electrochemical%20Performance,%20and%20Solid-State%20Lithium%20Diffusion&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Lyle,%20Erin&rft.date=2022-06-01&rft.volume=169&rft.issue=6&rft.spage=60527&rft.pages=60527-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ac76e5&rft_dat=%3Ciop_cross%3Ejesac76e5%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true