Review—Engineering Challenges in Green Hydrogen Production Systems

Today, hydrogen (H 2 ) is overwhelmingly produced through steam methane reforming (SMR) of natural gas, which emits about 12 kg of carbon dioxide (CO 2 ) for 1 kg of H 2 (∼12 kg-CO 2 /kg-H 2 ). Water electrolysis offers an alternative for H 2 production, but today’s electrolyzers consume over 55 kWh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2022-05, Vol.169 (5), p.54503
Hauptverfasser: Tao, Meng, Azzolini, Joseph A., Stechel, Ellen B., Ayers, Katherine E., Valdez, Thomas I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 54503
container_title Journal of the Electrochemical Society
container_volume 169
creator Tao, Meng
Azzolini, Joseph A.
Stechel, Ellen B.
Ayers, Katherine E.
Valdez, Thomas I.
description Today, hydrogen (H 2 ) is overwhelmingly produced through steam methane reforming (SMR) of natural gas, which emits about 12 kg of carbon dioxide (CO 2 ) for 1 kg of H 2 (∼12 kg-CO 2 /kg-H 2 ). Water electrolysis offers an alternative for H 2 production, but today’s electrolyzers consume over 55 kWh of electricity for 1 kg of H 2 (>55 kWh/kg-H 2 ). Electric grid-powered water electrolysis would emit less CO 2 than the SMR process when the carbon intensity for grid power falls below 0.22 kg-CO 2 /kWh. Solar- and wind-powered electrolytic H 2 production promises over 80% CO 2 reduction over the SMR process, but large-scale (megawatt to gigawatt) direct solar- or wind-powered water electrolysis has yet to be demonstrated. In this paper, several approaches for solar-powered electrolysis are analyzed: (1) coupling a photovoltaic (PV) array with an electrolyzer through alternating current; (2) direct-current (DC) to DC coupling; and (3) direct DC-DC coupling without a power converter. Co-locating a solar or wind farm with an electrolyzer provides a lower power loss and a lower upfront system cost than long-distance power transmission. A load-matching PV system for water electrolysis enables a 10%–50% lower levelized cost of electricity than the other systems and excellent scalability from a few kilowatts to a gigawatt. The concept of maximum current point tracking is introduced in place of maximum power point tracking to maximize the H 2 output by solar-powered electrolysis.
doi_str_mv 10.1149/1945-7111/ac6983
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_ac6983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesac6983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b73c8b52bd61323ecc5cad4fa6dbf98abceba4f0acb65deb9af6c4b3a84e382d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqWwM2ZkINSOL01GVEqLVAnEZbZ8OQ6uWqeyW1A2HoIn5ElIVMSEmM5F_3d0_h-hc4KvCGHViFSM52NCyEgZUZX0AA1-V4dogDGhOROcHKOTlJbdSEo2HqCbR3jz8P718TkNtQ8A0Yc6m7yq1QpCDSnzIZtFgJDNWxubumseYmN3ZuubkD21aQvrdIqOnFolOPupQ_RyO32ezPPF_exucr3IDeV8m-sxNaXmhbaC0IKCMdwoy5wSVruqVNqAVsxhZbTgFnSlnDBMU1UyoGVh6RDh_V0Tm5QiOLmJfq1iKwmWfQqytyx7y3KfQodc7hHfbOSy2cXQPfif_OIP-RI6RFSSS8wZx1RurKPfQoVuZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Review—Engineering Challenges in Green Hydrogen Production Systems</title><source>IOP Publishing Journals</source><creator>Tao, Meng ; Azzolini, Joseph A. ; Stechel, Ellen B. ; Ayers, Katherine E. ; Valdez, Thomas I.</creator><creatorcontrib>Tao, Meng ; Azzolini, Joseph A. ; Stechel, Ellen B. ; Ayers, Katherine E. ; Valdez, Thomas I.</creatorcontrib><description>Today, hydrogen (H 2 ) is overwhelmingly produced through steam methane reforming (SMR) of natural gas, which emits about 12 kg of carbon dioxide (CO 2 ) for 1 kg of H 2 (∼12 kg-CO 2 /kg-H 2 ). Water electrolysis offers an alternative for H 2 production, but today’s electrolyzers consume over 55 kWh of electricity for 1 kg of H 2 (&gt;55 kWh/kg-H 2 ). Electric grid-powered water electrolysis would emit less CO 2 than the SMR process when the carbon intensity for grid power falls below 0.22 kg-CO 2 /kWh. Solar- and wind-powered electrolytic H 2 production promises over 80% CO 2 reduction over the SMR process, but large-scale (megawatt to gigawatt) direct solar- or wind-powered water electrolysis has yet to be demonstrated. In this paper, several approaches for solar-powered electrolysis are analyzed: (1) coupling a photovoltaic (PV) array with an electrolyzer through alternating current; (2) direct-current (DC) to DC coupling; and (3) direct DC-DC coupling without a power converter. Co-locating a solar or wind farm with an electrolyzer provides a lower power loss and a lower upfront system cost than long-distance power transmission. A load-matching PV system for water electrolysis enables a 10%–50% lower levelized cost of electricity than the other systems and excellent scalability from a few kilowatts to a gigawatt. The concept of maximum current point tracking is introduced in place of maximum power point tracking to maximize the H 2 output by solar-powered electrolysis.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ac6983</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Energy Conversion ; Energy Storage ; Industrial Electrolysis</subject><ispartof>Journal of the Electrochemical Society, 2022-05, Vol.169 (5), p.54503</ispartof><rights>2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b73c8b52bd61323ecc5cad4fa6dbf98abceba4f0acb65deb9af6c4b3a84e382d3</citedby><cites>FETCH-LOGICAL-c355t-b73c8b52bd61323ecc5cad4fa6dbf98abceba4f0acb65deb9af6c4b3a84e382d3</cites><orcidid>0000-0001-5743-7092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ac6983/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Tao, Meng</creatorcontrib><creatorcontrib>Azzolini, Joseph A.</creatorcontrib><creatorcontrib>Stechel, Ellen B.</creatorcontrib><creatorcontrib>Ayers, Katherine E.</creatorcontrib><creatorcontrib>Valdez, Thomas I.</creatorcontrib><title>Review—Engineering Challenges in Green Hydrogen Production Systems</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Today, hydrogen (H 2 ) is overwhelmingly produced through steam methane reforming (SMR) of natural gas, which emits about 12 kg of carbon dioxide (CO 2 ) for 1 kg of H 2 (∼12 kg-CO 2 /kg-H 2 ). Water electrolysis offers an alternative for H 2 production, but today’s electrolyzers consume over 55 kWh of electricity for 1 kg of H 2 (&gt;55 kWh/kg-H 2 ). Electric grid-powered water electrolysis would emit less CO 2 than the SMR process when the carbon intensity for grid power falls below 0.22 kg-CO 2 /kWh. Solar- and wind-powered electrolytic H 2 production promises over 80% CO 2 reduction over the SMR process, but large-scale (megawatt to gigawatt) direct solar- or wind-powered water electrolysis has yet to be demonstrated. In this paper, several approaches for solar-powered electrolysis are analyzed: (1) coupling a photovoltaic (PV) array with an electrolyzer through alternating current; (2) direct-current (DC) to DC coupling; and (3) direct DC-DC coupling without a power converter. Co-locating a solar or wind farm with an electrolyzer provides a lower power loss and a lower upfront system cost than long-distance power transmission. A load-matching PV system for water electrolysis enables a 10%–50% lower levelized cost of electricity than the other systems and excellent scalability from a few kilowatts to a gigawatt. The concept of maximum current point tracking is introduced in place of maximum power point tracking to maximize the H 2 output by solar-powered electrolysis.</description><subject>Energy Conversion</subject><subject>Energy Storage</subject><subject>Industrial Electrolysis</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kLtOwzAUhi0EEqWwM2ZkINSOL01GVEqLVAnEZbZ8OQ6uWqeyW1A2HoIn5ElIVMSEmM5F_3d0_h-hc4KvCGHViFSM52NCyEgZUZX0AA1-V4dogDGhOROcHKOTlJbdSEo2HqCbR3jz8P718TkNtQ8A0Yc6m7yq1QpCDSnzIZtFgJDNWxubumseYmN3ZuubkD21aQvrdIqOnFolOPupQ_RyO32ezPPF_exucr3IDeV8m-sxNaXmhbaC0IKCMdwoy5wSVruqVNqAVsxhZbTgFnSlnDBMU1UyoGVh6RDh_V0Tm5QiOLmJfq1iKwmWfQqytyx7y3KfQodc7hHfbOSy2cXQPfif_OIP-RI6RFSSS8wZx1RurKPfQoVuZA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Tao, Meng</creator><creator>Azzolini, Joseph A.</creator><creator>Stechel, Ellen B.</creator><creator>Ayers, Katherine E.</creator><creator>Valdez, Thomas I.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5743-7092</orcidid></search><sort><creationdate>20220501</creationdate><title>Review—Engineering Challenges in Green Hydrogen Production Systems</title><author>Tao, Meng ; Azzolini, Joseph A. ; Stechel, Ellen B. ; Ayers, Katherine E. ; Valdez, Thomas I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b73c8b52bd61323ecc5cad4fa6dbf98abceba4f0acb65deb9af6c4b3a84e382d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy Conversion</topic><topic>Energy Storage</topic><topic>Industrial Electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Meng</creatorcontrib><creatorcontrib>Azzolini, Joseph A.</creatorcontrib><creatorcontrib>Stechel, Ellen B.</creatorcontrib><creatorcontrib>Ayers, Katherine E.</creatorcontrib><creatorcontrib>Valdez, Thomas I.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Meng</au><au>Azzolini, Joseph A.</au><au>Stechel, Ellen B.</au><au>Ayers, Katherine E.</au><au>Valdez, Thomas I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review—Engineering Challenges in Green Hydrogen Production Systems</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>169</volume><issue>5</issue><spage>54503</spage><pages>54503-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Today, hydrogen (H 2 ) is overwhelmingly produced through steam methane reforming (SMR) of natural gas, which emits about 12 kg of carbon dioxide (CO 2 ) for 1 kg of H 2 (∼12 kg-CO 2 /kg-H 2 ). Water electrolysis offers an alternative for H 2 production, but today’s electrolyzers consume over 55 kWh of electricity for 1 kg of H 2 (&gt;55 kWh/kg-H 2 ). Electric grid-powered water electrolysis would emit less CO 2 than the SMR process when the carbon intensity for grid power falls below 0.22 kg-CO 2 /kWh. Solar- and wind-powered electrolytic H 2 production promises over 80% CO 2 reduction over the SMR process, but large-scale (megawatt to gigawatt) direct solar- or wind-powered water electrolysis has yet to be demonstrated. In this paper, several approaches for solar-powered electrolysis are analyzed: (1) coupling a photovoltaic (PV) array with an electrolyzer through alternating current; (2) direct-current (DC) to DC coupling; and (3) direct DC-DC coupling without a power converter. Co-locating a solar or wind farm with an electrolyzer provides a lower power loss and a lower upfront system cost than long-distance power transmission. A load-matching PV system for water electrolysis enables a 10%–50% lower levelized cost of electricity than the other systems and excellent scalability from a few kilowatts to a gigawatt. The concept of maximum current point tracking is introduced in place of maximum power point tracking to maximize the H 2 output by solar-powered electrolysis.</abstract><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ac6983</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5743-7092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2022-05, Vol.169 (5), p.54503
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1945_7111_ac6983
source IOP Publishing Journals
subjects Energy Conversion
Energy Storage
Industrial Electrolysis
title Review—Engineering Challenges in Green Hydrogen Production Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%E2%80%94Engineering%20Challenges%20in%20Green%20Hydrogen%20Production%20Systems&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Tao,%20Meng&rft.date=2022-05-01&rft.volume=169&rft.issue=5&rft.spage=54503&rft.pages=54503-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ac6983&rft_dat=%3Ciop_cross%3Ejesac6983%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true