SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance
To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni x Co y Mn z )O 2 , with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0....
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2020-01, Vol.167 (13), p.130507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 130507 |
container_title | Journal of the Electrochemical Society |
container_volume | 167 |
creator | Sicklinger, Johannes Beyer, Hans Hartmann, Louis Riewald, Felix Sedlmeier, Christian Gasteiger, Hubert A. |
description | To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni
x
Co
y
Mn
z
)O
2
, with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li
2
MnO
3
· (1−x) LiNi
x
Co
y
Mn
z
O
2
. Unfortunately, these materials strongly react with CO
2
and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO
3
thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO
3
treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO
3
-treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments. |
doi_str_mv | 10.1149/1945-7111/abb6cb |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_abb6cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1945_7111_abb6cb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZ-kfMNhOnDjsStTSSi1FpfvIdsbUKI_KTkB8Cn9LQhGr0YzuPSMdhG4ZvWMszu5ZFguSMsbuldaJ0Wdo8n86RxNKWUTiRLBLdBXC-7AyGacT9P26xRHee1BdDU2HW4vXrju4viZYNSXeqOZNNRCA7Jw54Od8E7Bt_RAiq7bBj6rrwDsID3jeHFRjoMS7VvehGzoBd-2n8mXAy752JZ7V2o0_Zs7_slf10bcfQ2PRVxXJoarwC_iBXo-ga3RhVRXg5m9O0X4x3-dLst4-rfLZmhgpNQEtrDWUZSVIHmdSWi4iCtrYBBJRxkoJKlnKS7Ap8AS4yowWUqTCMM44jaaInrDGtyF4sMXRu1r5r4LRYjRbjBqLUWNxMhv9ADtCbjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</title><source>IOP Publishing Journals</source><creator>Sicklinger, Johannes ; Beyer, Hans ; Hartmann, Louis ; Riewald, Felix ; Sedlmeier, Christian ; Gasteiger, Hubert A.</creator><creatorcontrib>Sicklinger, Johannes ; Beyer, Hans ; Hartmann, Louis ; Riewald, Felix ; Sedlmeier, Christian ; Gasteiger, Hubert A.</creatorcontrib><description>To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni
x
Co
y
Mn
z
)O
2
, with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li
2
MnO
3
· (1−x) LiNi
x
Co
y
Mn
z
O
2
. Unfortunately, these materials strongly react with CO
2
and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO
3
thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO
3
treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO
3
-treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/abb6cb</identifier><language>eng</language><ispartof>Journal of the Electrochemical Society, 2020-01, Vol.167 (13), p.130507</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</citedby><cites>FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</cites><orcidid>0000-0003-2815-993X ; 0000-0001-8199-8703 ; 0000-0002-3964-1935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sicklinger, Johannes</creatorcontrib><creatorcontrib>Beyer, Hans</creatorcontrib><creatorcontrib>Hartmann, Louis</creatorcontrib><creatorcontrib>Riewald, Felix</creatorcontrib><creatorcontrib>Sedlmeier, Christian</creatorcontrib><creatorcontrib>Gasteiger, Hubert A.</creatorcontrib><title>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</title><title>Journal of the Electrochemical Society</title><description>To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni
x
Co
y
Mn
z
)O
2
, with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li
2
MnO
3
· (1−x) LiNi
x
Co
y
Mn
z
O
2
. Unfortunately, these materials strongly react with CO
2
and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO
3
thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO
3
treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO
3
-treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZ-kfMNhOnDjsStTSSi1FpfvIdsbUKI_KTkB8Cn9LQhGr0YzuPSMdhG4ZvWMszu5ZFguSMsbuldaJ0Wdo8n86RxNKWUTiRLBLdBXC-7AyGacT9P26xRHee1BdDU2HW4vXrju4viZYNSXeqOZNNRCA7Jw54Od8E7Bt_RAiq7bBj6rrwDsID3jeHFRjoMS7VvehGzoBd-2n8mXAy752JZ7V2o0_Zs7_slf10bcfQ2PRVxXJoarwC_iBXo-ga3RhVRXg5m9O0X4x3-dLst4-rfLZmhgpNQEtrDWUZSVIHmdSWi4iCtrYBBJRxkoJKlnKS7Ap8AS4yowWUqTCMM44jaaInrDGtyF4sMXRu1r5r4LRYjRbjBqLUWNxMhv9ADtCbjM</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Sicklinger, Johannes</creator><creator>Beyer, Hans</creator><creator>Hartmann, Louis</creator><creator>Riewald, Felix</creator><creator>Sedlmeier, Christian</creator><creator>Gasteiger, Hubert A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2815-993X</orcidid><orcidid>https://orcid.org/0000-0001-8199-8703</orcidid><orcidid>https://orcid.org/0000-0002-3964-1935</orcidid></search><sort><creationdate>20200110</creationdate><title>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</title><author>Sicklinger, Johannes ; Beyer, Hans ; Hartmann, Louis ; Riewald, Felix ; Sedlmeier, Christian ; Gasteiger, Hubert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sicklinger, Johannes</creatorcontrib><creatorcontrib>Beyer, Hans</creatorcontrib><creatorcontrib>Hartmann, Louis</creatorcontrib><creatorcontrib>Riewald, Felix</creatorcontrib><creatorcontrib>Sedlmeier, Christian</creatorcontrib><creatorcontrib>Gasteiger, Hubert A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sicklinger, Johannes</au><au>Beyer, Hans</au><au>Hartmann, Louis</au><au>Riewald, Felix</au><au>Sedlmeier, Christian</au><au>Gasteiger, Hubert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2020-01-10</date><risdate>2020</risdate><volume>167</volume><issue>13</issue><spage>130507</spage><pages>130507-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni
x
Co
y
Mn
z
)O
2
, with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li
2
MnO
3
· (1−x) LiNi
x
Co
y
Mn
z
O
2
. Unfortunately, these materials strongly react with CO
2
and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO
3
thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO
3
treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO
3
-treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.</abstract><doi>10.1149/1945-7111/abb6cb</doi><orcidid>https://orcid.org/0000-0003-2815-993X</orcidid><orcidid>https://orcid.org/0000-0001-8199-8703</orcidid><orcidid>https://orcid.org/0000-0002-3964-1935</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2020-01, Vol.167 (13), p.130507 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_1945_7111_abb6cb |
source | IOP Publishing Journals |
title | SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SO%203%20Treatment%20of%20Lithium-%20and%20Manganese-Rich%20NCMs%20for%20Li-Ion%20Batteries:%20Enhanced%20Robustness%20towards%20Humid%20Ambient%20Air%20and%20Improved%20Full-Cell%20Performance&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Sicklinger,%20Johannes&rft.date=2020-01-10&rft.volume=167&rft.issue=13&rft.spage=130507&rft.pages=130507-&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/1945-7111/abb6cb&rft_dat=%3Ccrossref%3E10_1149_1945_7111_abb6cb%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |