SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance

To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni x Co y Mn z )O 2 , with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2020-01, Vol.167 (13), p.130507
Hauptverfasser: Sicklinger, Johannes, Beyer, Hans, Hartmann, Louis, Riewald, Felix, Sedlmeier, Christian, Gasteiger, Hubert A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 130507
container_title Journal of the Electrochemical Society
container_volume 167
creator Sicklinger, Johannes
Beyer, Hans
Hartmann, Louis
Riewald, Felix
Sedlmeier, Christian
Gasteiger, Hubert A.
description To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni x Co y Mn z )O 2 , with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li 2 MnO 3 · (1−x) LiNi x Co y Mn z O 2 . Unfortunately, these materials strongly react with CO 2 and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO 3 thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO 3 treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO 3 -treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.
doi_str_mv 10.1149/1945-7111/abb6cb
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1945_7111_abb6cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_1945_7111_abb6cb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZ-kfMNhOnDjsStTSSi1FpfvIdsbUKI_KTkB8Cn9LQhGr0YzuPSMdhG4ZvWMszu5ZFguSMsbuldaJ0Wdo8n86RxNKWUTiRLBLdBXC-7AyGacT9P26xRHee1BdDU2HW4vXrju4viZYNSXeqOZNNRCA7Jw54Od8E7Bt_RAiq7bBj6rrwDsID3jeHFRjoMS7VvehGzoBd-2n8mXAy752JZ7V2o0_Zs7_slf10bcfQ2PRVxXJoarwC_iBXo-ga3RhVRXg5m9O0X4x3-dLst4-rfLZmhgpNQEtrDWUZSVIHmdSWi4iCtrYBBJRxkoJKlnKS7Ap8AS4yowWUqTCMM44jaaInrDGtyF4sMXRu1r5r4LRYjRbjBqLUWNxMhv9ADtCbjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</title><source>IOP Publishing Journals</source><creator>Sicklinger, Johannes ; Beyer, Hans ; Hartmann, Louis ; Riewald, Felix ; Sedlmeier, Christian ; Gasteiger, Hubert A.</creator><creatorcontrib>Sicklinger, Johannes ; Beyer, Hans ; Hartmann, Louis ; Riewald, Felix ; Sedlmeier, Christian ; Gasteiger, Hubert A.</creatorcontrib><description>To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni x Co y Mn z )O 2 , with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li 2 MnO 3 · (1−x) LiNi x Co y Mn z O 2 . Unfortunately, these materials strongly react with CO 2 and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO 3 thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO 3 treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO 3 -treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/abb6cb</identifier><language>eng</language><ispartof>Journal of the Electrochemical Society, 2020-01, Vol.167 (13), p.130507</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</citedby><cites>FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</cites><orcidid>0000-0003-2815-993X ; 0000-0001-8199-8703 ; 0000-0002-3964-1935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sicklinger, Johannes</creatorcontrib><creatorcontrib>Beyer, Hans</creatorcontrib><creatorcontrib>Hartmann, Louis</creatorcontrib><creatorcontrib>Riewald, Felix</creatorcontrib><creatorcontrib>Sedlmeier, Christian</creatorcontrib><creatorcontrib>Gasteiger, Hubert A.</creatorcontrib><title>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</title><title>Journal of the Electrochemical Society</title><description>To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni x Co y Mn z )O 2 , with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li 2 MnO 3 · (1−x) LiNi x Co y Mn z O 2 . Unfortunately, these materials strongly react with CO 2 and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO 3 thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO 3 treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO 3 -treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZ-kfMNhOnDjsStTSSi1FpfvIdsbUKI_KTkB8Cn9LQhGr0YzuPSMdhG4ZvWMszu5ZFguSMsbuldaJ0Wdo8n86RxNKWUTiRLBLdBXC-7AyGacT9P26xRHee1BdDU2HW4vXrju4viZYNSXeqOZNNRCA7Jw54Od8E7Bt_RAiq7bBj6rrwDsID3jeHFRjoMS7VvehGzoBd-2n8mXAy752JZ7V2o0_Zs7_slf10bcfQ2PRVxXJoarwC_iBXo-ga3RhVRXg5m9O0X4x3-dLst4-rfLZmhgpNQEtrDWUZSVIHmdSWi4iCtrYBBJRxkoJKlnKS7Ap8AS4yowWUqTCMM44jaaInrDGtyF4sMXRu1r5r4LRYjRbjBqLUWNxMhv9ADtCbjM</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Sicklinger, Johannes</creator><creator>Beyer, Hans</creator><creator>Hartmann, Louis</creator><creator>Riewald, Felix</creator><creator>Sedlmeier, Christian</creator><creator>Gasteiger, Hubert A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2815-993X</orcidid><orcidid>https://orcid.org/0000-0001-8199-8703</orcidid><orcidid>https://orcid.org/0000-0002-3964-1935</orcidid></search><sort><creationdate>20200110</creationdate><title>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</title><author>Sicklinger, Johannes ; Beyer, Hans ; Hartmann, Louis ; Riewald, Felix ; Sedlmeier, Christian ; Gasteiger, Hubert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c88b-eb5ffc019de824988f2530ebcf6e65d4aa508172def7e26e2a9cb58575c121203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sicklinger, Johannes</creatorcontrib><creatorcontrib>Beyer, Hans</creatorcontrib><creatorcontrib>Hartmann, Louis</creatorcontrib><creatorcontrib>Riewald, Felix</creatorcontrib><creatorcontrib>Sedlmeier, Christian</creatorcontrib><creatorcontrib>Gasteiger, Hubert A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sicklinger, Johannes</au><au>Beyer, Hans</au><au>Hartmann, Louis</au><au>Riewald, Felix</au><au>Sedlmeier, Christian</au><au>Gasteiger, Hubert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2020-01-10</date><risdate>2020</risdate><volume>167</volume><issue>13</issue><spage>130507</spage><pages>130507-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>To increase the specific capacity of layered transition metal oxide based cathode active materials (CAMs) for Li-ion batteries such as NCMs (Li(Ni x Co y Mn z )O 2 , with x + y + z = 1), two major strategies are pursued: (i) increasing the Ni content (beyond, e.g., NCM811 with x = 0.8 and y = z = 0.1) or (ii) using Li- and Mn-rich NCMs (LMR-NCMs) which can be represented by the formula x Li 2 MnO 3 · (1−x) LiNi x Co y Mn z O 2 . Unfortunately, these materials strongly react with CO 2 and moisture in the ambient: Ni-rich NCMs due to the high reactivity of nickel, and LMR-NCMs due to their ≈10-fold higher specific surface area. Here we present a novel surface stabilization approach via SO 3 thermal treatment of LMR-NCM suitable to be implemented in CAM manufacturing. Infrared spectroscopy and X-ray photoelectron spectroscopy prove that SO 3 treatment results in a sulfate surface layer, which reduces the formation of surface carbonates and hydroxides during ambient air storage. In contrast to untreated LMR-NCM, the SO 3 -treated material is very robust towards exposure to ambient air at high relative humidity, as demonstrated by its lower reactivity with ethylene carbonate based electrolyte (determined via on-line mass spectrometry) and by its reduced impedance build-up and improved rate capability in full-cell cycling experiments.</abstract><doi>10.1149/1945-7111/abb6cb</doi><orcidid>https://orcid.org/0000-0003-2815-993X</orcidid><orcidid>https://orcid.org/0000-0001-8199-8703</orcidid><orcidid>https://orcid.org/0000-0002-3964-1935</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2020-01, Vol.167 (13), p.130507
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1945_7111_abb6cb
source IOP Publishing Journals
title SO 3 Treatment of Lithium- and Manganese-Rich NCMs for Li-Ion Batteries: Enhanced Robustness towards Humid Ambient Air and Improved Full-Cell Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SO%203%20Treatment%20of%20Lithium-%20and%20Manganese-Rich%20NCMs%20for%20Li-Ion%20Batteries:%20Enhanced%20Robustness%20towards%20Humid%20Ambient%20Air%20and%20Improved%20Full-Cell%20Performance&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Sicklinger,%20Johannes&rft.date=2020-01-10&rft.volume=167&rft.issue=13&rft.spage=130507&rft.pages=130507-&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/1945-7111/abb6cb&rft_dat=%3Ccrossref%3E10_1149_1945_7111_abb6cb%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true