Modeling Synergistic Fuel Cell Membrane Degradation with Mitigating Effects of Cerium

During operation, polymer-electrolyte fuel cells undergo mechanical and chemical degradation, which behave synergistically and lead to accelerated membrane deterioration over time. This study builds upon previous modeling work on mechanical degradation, as described by a pinhole in the membrane, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2020-09, Vol.98 (9), p.395-405
Hauptverfasser: Ehlinger, Victoria Marie, Kusoglu, Ahmet, Weber, Adam Z.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 9
container_start_page 395
container_title ECS transactions
container_volume 98
creator Ehlinger, Victoria Marie
Kusoglu, Ahmet
Weber, Adam Z.
description During operation, polymer-electrolyte fuel cells undergo mechanical and chemical degradation, which behave synergistically and lead to accelerated membrane deterioration over time. This study builds upon previous modeling work on mechanical degradation, as described by a pinhole in the membrane, and chemical degradation mitigation by using cerium. By combining these two models, analysis can be carried out on the coupled degradation methods and how the mitigation effects of cerium disrupt the degradation cycle. The model results show how the presence of a pinhole in the membrane changes the distribution of cerium in the cell and modifies chemical degradation rates. In addition, the model shows how cerium affects the rate of pinhole growth by slowing down the rate of change in mechanical properties due to chemical degradation. Finally, the model shows how cerium modifies the mechanical and chemical degradation rates of the membrane under humidity- and voltage-cycling conditions.
doi_str_mv 10.1149/09809.0395ecst
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_09809_0395ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/09809.0395ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-391375f2215b85eed0d4a15ee70a5d13b451065e863dd54a8b06c72485c225973</originalsourceid><addsrcrecordid>eNp1kEFLAzEQRoMoWKtXzzkLW5NNskmOUlsVWjxoz0s2mV1TtrslSZH-e6PWo6f5Br43DA-hW0pmlHJ9T7QiekaYFmBjOkMTqpkqKsnk-SkLVZWX6CrGLSFVZuQEbdajg94PHX47DhA6H5O3eHmAHs-h7_Eadk0wA-BH6IJxJvlxwJ8-feC1T77Le0YXbQs2RTy2GQr-sLtGF63pI9yc5hRtlov3-XOxen16mT-sCks5TwXTlEnRliUVjRIAjjhuaA6SGOEoa7igpBKgKuac4EY1pLKy5ErYshRasima_d61YYwxQFvvg9-ZcKwpqb-l1D9S6j8pGbj7Bfy4r7fjIQz5vf_KXzw_YqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Synergistic Fuel Cell Membrane Degradation with Mitigating Effects of Cerium</title><source>Institute of Physics Journals</source><creator>Ehlinger, Victoria Marie ; Kusoglu, Ahmet ; Weber, Adam Z.</creator><creatorcontrib>Ehlinger, Victoria Marie ; Kusoglu, Ahmet ; Weber, Adam Z.</creatorcontrib><description>During operation, polymer-electrolyte fuel cells undergo mechanical and chemical degradation, which behave synergistically and lead to accelerated membrane deterioration over time. This study builds upon previous modeling work on mechanical degradation, as described by a pinhole in the membrane, and chemical degradation mitigation by using cerium. By combining these two models, analysis can be carried out on the coupled degradation methods and how the mitigation effects of cerium disrupt the degradation cycle. The model results show how the presence of a pinhole in the membrane changes the distribution of cerium in the cell and modifies chemical degradation rates. In addition, the model shows how cerium affects the rate of pinhole growth by slowing down the rate of change in mechanical properties due to chemical degradation. Finally, the model shows how cerium modifies the mechanical and chemical degradation rates of the membrane under humidity- and voltage-cycling conditions.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/09809.0395ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2020-09, Vol.98 (9), p.395-405</ispartof><rights>2020 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2761-1050 ; 0000-0001-7333-1271 ; 0000-0002-7749-1624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/09809.0395ecst/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Ehlinger, Victoria Marie</creatorcontrib><creatorcontrib>Kusoglu, Ahmet</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><title>Modeling Synergistic Fuel Cell Membrane Degradation with Mitigating Effects of Cerium</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>During operation, polymer-electrolyte fuel cells undergo mechanical and chemical degradation, which behave synergistically and lead to accelerated membrane deterioration over time. This study builds upon previous modeling work on mechanical degradation, as described by a pinhole in the membrane, and chemical degradation mitigation by using cerium. By combining these two models, analysis can be carried out on the coupled degradation methods and how the mitigation effects of cerium disrupt the degradation cycle. The model results show how the presence of a pinhole in the membrane changes the distribution of cerium in the cell and modifies chemical degradation rates. In addition, the model shows how cerium affects the rate of pinhole growth by slowing down the rate of change in mechanical properties due to chemical degradation. Finally, the model shows how cerium modifies the mechanical and chemical degradation rates of the membrane under humidity- and voltage-cycling conditions.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQRoMoWKtXzzkLW5NNskmOUlsVWjxoz0s2mV1TtrslSZH-e6PWo6f5Br43DA-hW0pmlHJ9T7QiekaYFmBjOkMTqpkqKsnk-SkLVZWX6CrGLSFVZuQEbdajg94PHX47DhA6H5O3eHmAHs-h7_Eadk0wA-BH6IJxJvlxwJ8-feC1T77Le0YXbQs2RTy2GQr-sLtGF63pI9yc5hRtlov3-XOxen16mT-sCks5TwXTlEnRliUVjRIAjjhuaA6SGOEoa7igpBKgKuac4EY1pLKy5ErYshRasima_d61YYwxQFvvg9-ZcKwpqb-l1D9S6j8pGbj7Bfy4r7fjIQz5vf_KXzw_YqY</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Ehlinger, Victoria Marie</creator><creator>Kusoglu, Ahmet</creator><creator>Weber, Adam Z.</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2761-1050</orcidid><orcidid>https://orcid.org/0000-0001-7333-1271</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid></search><sort><creationdate>20200908</creationdate><title>Modeling Synergistic Fuel Cell Membrane Degradation with Mitigating Effects of Cerium</title><author>Ehlinger, Victoria Marie ; Kusoglu, Ahmet ; Weber, Adam Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-391375f2215b85eed0d4a15ee70a5d13b451065e863dd54a8b06c72485c225973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ehlinger, Victoria Marie</creatorcontrib><creatorcontrib>Kusoglu, Ahmet</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehlinger, Victoria Marie</au><au>Kusoglu, Ahmet</au><au>Weber, Adam Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Synergistic Fuel Cell Membrane Degradation with Mitigating Effects of Cerium</atitle><jtitle>ECS transactions</jtitle><addtitle>ECS Trans</addtitle><date>2020-09-08</date><risdate>2020</risdate><volume>98</volume><issue>9</issue><spage>395</spage><epage>405</epage><pages>395-405</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>During operation, polymer-electrolyte fuel cells undergo mechanical and chemical degradation, which behave synergistically and lead to accelerated membrane deterioration over time. This study builds upon previous modeling work on mechanical degradation, as described by a pinhole in the membrane, and chemical degradation mitigation by using cerium. By combining these two models, analysis can be carried out on the coupled degradation methods and how the mitigation effects of cerium disrupt the degradation cycle. The model results show how the presence of a pinhole in the membrane changes the distribution of cerium in the cell and modifies chemical degradation rates. In addition, the model shows how cerium affects the rate of pinhole growth by slowing down the rate of change in mechanical properties due to chemical degradation. Finally, the model shows how cerium modifies the mechanical and chemical degradation rates of the membrane under humidity- and voltage-cycling conditions.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/09809.0395ecst</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2761-1050</orcidid><orcidid>https://orcid.org/0000-0001-7333-1271</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2020-09, Vol.98 (9), p.395-405
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_09809_0395ecst
source Institute of Physics Journals
title Modeling Synergistic Fuel Cell Membrane Degradation with Mitigating Effects of Cerium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Synergistic%20Fuel%20Cell%20Membrane%20Degradation%20with%20Mitigating%20Effects%20of%20Cerium&rft.jtitle=ECS%20transactions&rft.au=Ehlinger,%20Victoria%20Marie&rft.date=2020-09-08&rft.volume=98&rft.issue=9&rft.spage=395&rft.epage=405&rft.pages=395-405&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/09809.0395ecst&rft_dat=%3Ciop_cross%3E10.1149/09809.0395ecst%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true