(Invited) Large-Scale DFT Study of Ge/Si 3D Nanoislands and Core-Shell Nanowires

Density functional theory (DFT) calculations have been playing important roles to clarify the structures of semiconductor surfaces at atomic scale. However, DFT studies of complex nanostructures are usually impossible because conventional DFT methods cannot treat large systems containing many thousa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2018-07, Vol.86 (7), p.269-279
1. Verfasser: Miyazaki, Tsuyoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 7
container_start_page 269
container_title ECS transactions
container_volume 86
creator Miyazaki, Tsuyoshi
description Density functional theory (DFT) calculations have been playing important roles to clarify the structures of semiconductor surfaces at atomic scale. However, DFT studies of complex nanostructures are usually impossible because conventional DFT methods cannot treat large systems containing many thousands of atoms.In this paper, we survey our large scale DFT study on (i) the growth of Ge 3D nanostructure on Si(001) substrate and (ii) the atomic and electronic structures of Si/Ge or Ge/Si core-shell nanowires, using our linear-scaling DFT code CONQUEST. The code uses large-scale DFT techniques and has high efficiency on massively parallel computers. We demonstrate that CONQUEST can calculate the atomic positions of the realistic models of nanostructures observed in experiments and can clarify the unique electronic properties of these nano-structured materials.
doi_str_mv 10.1149/08607.0269ecst
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_08607_0269ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/08607.0269ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-bc6bc9b854c3c328e07e70ecf3997499fc896c00d362a6a0c253ce72ae54ffc13</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFavnveoQtpJNtnNHqVfFooKqeewmcxqSkzKbqr03xvbevQyM_DOMwwPY7chjMIw1mNIJagRRFIT-u6MDUIt0kAqoc5Pc5LK6JJdeb8BkD2jBuz1btl8VR2V93xl3DsFGZqa-HS-5lm3K_e8tXxB46ziYsqfTdNWvjZN6Xlf-KR1PfBBdX2IvitH_ppdWFN7ujn1IXubz9aTp2D1slhOHlcBihi6oEBZoC7SJEaBIkoJFCkgtEJrFWttMdUSAUohIyMNYJQIJBUZSmJrMRRDNjreRdd678jmW1d9GrfPQ8h_feQHH_mfjx54OAJVu8037c41_Xv_Lf8AZLlf5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>(Invited) Large-Scale DFT Study of Ge/Si 3D Nanoislands and Core-Shell Nanowires</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Miyazaki, Tsuyoshi</creator><creatorcontrib>Miyazaki, Tsuyoshi</creatorcontrib><description>Density functional theory (DFT) calculations have been playing important roles to clarify the structures of semiconductor surfaces at atomic scale. However, DFT studies of complex nanostructures are usually impossible because conventional DFT methods cannot treat large systems containing many thousands of atoms.In this paper, we survey our large scale DFT study on (i) the growth of Ge 3D nanostructure on Si(001) substrate and (ii) the atomic and electronic structures of Si/Ge or Ge/Si core-shell nanowires, using our linear-scaling DFT code CONQUEST. The code uses large-scale DFT techniques and has high efficiency on massively parallel computers. We demonstrate that CONQUEST can calculate the atomic positions of the realistic models of nanostructures observed in experiments and can clarify the unique electronic properties of these nano-structured materials.</description><identifier>ISSN: 1938-5862</identifier><identifier>ISSN: 1938-6737</identifier><identifier>EISSN: 1938-6737</identifier><identifier>EISSN: 1938-5862</identifier><identifier>DOI: 10.1149/08607.0269ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2018-07, Vol.86 (7), p.269-279</ispartof><rights>2018 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-bc6bc9b854c3c328e07e70ecf3997499fc896c00d362a6a0c253ce72ae54ffc13</citedby><orcidid>0000-0003-3534-4404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/08607.0269ecst/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Miyazaki, Tsuyoshi</creatorcontrib><title>(Invited) Large-Scale DFT Study of Ge/Si 3D Nanoislands and Core-Shell Nanowires</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>Density functional theory (DFT) calculations have been playing important roles to clarify the structures of semiconductor surfaces at atomic scale. However, DFT studies of complex nanostructures are usually impossible because conventional DFT methods cannot treat large systems containing many thousands of atoms.In this paper, we survey our large scale DFT study on (i) the growth of Ge 3D nanostructure on Si(001) substrate and (ii) the atomic and electronic structures of Si/Ge or Ge/Si core-shell nanowires, using our linear-scaling DFT code CONQUEST. The code uses large-scale DFT techniques and has high efficiency on massively parallel computers. We demonstrate that CONQUEST can calculate the atomic positions of the realistic models of nanostructures observed in experiments and can clarify the unique electronic properties of these nano-structured materials.</description><issn>1938-5862</issn><issn>1938-6737</issn><issn>1938-6737</issn><issn>1938-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFavnveoQtpJNtnNHqVfFooKqeewmcxqSkzKbqr03xvbevQyM_DOMwwPY7chjMIw1mNIJagRRFIT-u6MDUIt0kAqoc5Pc5LK6JJdeb8BkD2jBuz1btl8VR2V93xl3DsFGZqa-HS-5lm3K_e8tXxB46ziYsqfTdNWvjZN6Xlf-KR1PfBBdX2IvitH_ppdWFN7ujn1IXubz9aTp2D1slhOHlcBihi6oEBZoC7SJEaBIkoJFCkgtEJrFWttMdUSAUohIyMNYJQIJBUZSmJrMRRDNjreRdd678jmW1d9GrfPQ8h_feQHH_mfjx54OAJVu8037c41_Xv_Lf8AZLlf5g</recordid><startdate>20180720</startdate><enddate>20180720</enddate><creator>Miyazaki, Tsuyoshi</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3534-4404</orcidid></search><sort><creationdate>20180720</creationdate><title>(Invited) Large-Scale DFT Study of Ge/Si 3D Nanoislands and Core-Shell Nanowires</title><author>Miyazaki, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-bc6bc9b854c3c328e07e70ecf3997499fc896c00d362a6a0c253ce72ae54ffc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, Tsuyoshi</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyazaki, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(Invited) Large-Scale DFT Study of Ge/Si 3D Nanoislands and Core-Shell Nanowires</atitle><jtitle>ECS transactions</jtitle><addtitle>ECS Trans</addtitle><date>2018-07-20</date><risdate>2018</risdate><volume>86</volume><issue>7</issue><spage>269</spage><epage>279</epage><pages>269-279</pages><issn>1938-5862</issn><issn>1938-6737</issn><eissn>1938-6737</eissn><eissn>1938-5862</eissn><abstract>Density functional theory (DFT) calculations have been playing important roles to clarify the structures of semiconductor surfaces at atomic scale. However, DFT studies of complex nanostructures are usually impossible because conventional DFT methods cannot treat large systems containing many thousands of atoms.In this paper, we survey our large scale DFT study on (i) the growth of Ge 3D nanostructure on Si(001) substrate and (ii) the atomic and electronic structures of Si/Ge or Ge/Si core-shell nanowires, using our linear-scaling DFT code CONQUEST. The code uses large-scale DFT techniques and has high efficiency on massively parallel computers. We demonstrate that CONQUEST can calculate the atomic positions of the realistic models of nanostructures observed in experiments and can clarify the unique electronic properties of these nano-structured materials.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/08607.0269ecst</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3534-4404</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2018-07, Vol.86 (7), p.269-279
issn 1938-5862
1938-6737
1938-6737
1938-5862
language eng
recordid cdi_crossref_primary_10_1149_08607_0269ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title (Invited) Large-Scale DFT Study of Ge/Si 3D Nanoislands and Core-Shell Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(Invited)%20Large-Scale%20DFT%20Study%20of%20Ge/Si%203D%20Nanoislands%20and%20Core-Shell%20Nanowires&rft.jtitle=ECS%20transactions&rft.au=Miyazaki,%20Tsuyoshi&rft.date=2018-07-20&rft.volume=86&rft.issue=7&rft.spage=269&rft.epage=279&rft.pages=269-279&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/08607.0269ecst&rft_dat=%3Ciop_cross%3E10.1149/08607.0269ecst%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true