GDL and MPL Characterization and Their Relevance to Fuel Cell Modelling

Liquid water saturation of gas diffusion layer (GDL) pores limits gas transport leading to poor overall performance in polymer electrolyte membrane fuel cells (PEMFC). A survey of relevant parameters for GDL characterization, useful methods for investigations and the implications of these results to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2015, Vol.69 (17), p.1279-1291
Hauptverfasser: Haußmann, Jan, Wilhelm, Florian, Enz, Simon, Klages, Merle, Pournemat, Anahid, Bergbreiter, Christian, Clark, Joseph Simon, Duraisamy, Keerthi, Seidenberger, Katrin, Markötter, Henning, Manke, Ingo, Scholta, Joachim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1291
container_issue 17
container_start_page 1279
container_title ECS transactions
container_volume 69
creator Haußmann, Jan
Wilhelm, Florian
Enz, Simon
Klages, Merle
Pournemat, Anahid
Bergbreiter, Christian
Clark, Joseph Simon
Duraisamy, Keerthi
Seidenberger, Katrin
Markötter, Henning
Manke, Ingo
Scholta, Joachim
description Liquid water saturation of gas diffusion layer (GDL) pores limits gas transport leading to poor overall performance in polymer electrolyte membrane fuel cells (PEMFC). A survey of relevant parameters for GDL characterization, useful methods for investigations and the implications of these results to GDL modelling is provided. The GDL structure can be characterized using X-ray based methods. Structural information and surface parameters must be known to model the water distribution itself. Approaches for the determination of spatially resolved and integral surface property data are presented. For example, the inner contact angle can be determined by inverse gas chromatography. Other relevant parameters are the Leverett function, electrical and mechanical parameters such as E module and shear modulus G. Methods and results of the physical characterization are presented. The use of both structural and surface parameters is shown for Monte Carlo (MC) modelling describing the behavior of liquid water inside the porous fibre structure. Furthermore, these results are used to consider local changes in morphology and surface properties of the GDL and to improve full cell computational fluid dynamics (CFD) simulations of PEM fuel cells.
doi_str_mv 10.1149/06917.1279ecst
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_06917_1279ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_06917_1279ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-6b2bf7af9f44ace5322a3b991c1c2071dce5401021baba321902a7adb89993e3</originalsourceid><addsrcrecordid>eNo1kEFPg0AUhDdGE2v16nn_ALhvl7K8o0HbmtBoDHfyWB4Wg2B20UR_vVjraSYzmTl8QlyDigESvFEpgo1BW2QXphOxADRZlFpjT49-laX6XFyE8KpUOm_sQmw2d4WkoZG7p0Lme_LkJvbdN03dOByKcs-dl8_c8ycNjuU0yvUH9zLnvpe7sZmlG14uxVlLfeCroy5Fub4v821UPG4e8tsicoAwRWmt69ZSi22SkOOV0ZpMjQgOnFYWmjlLFCgNNdVkNKDSZKmpM0Q0bJYi_rt1fgzBc1u9--6N_FcFqvqlUB0oVP8UzA_GME_P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GDL and MPL Characterization and Their Relevance to Fuel Cell Modelling</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Haußmann, Jan ; Wilhelm, Florian ; Enz, Simon ; Klages, Merle ; Pournemat, Anahid ; Bergbreiter, Christian ; Clark, Joseph Simon ; Duraisamy, Keerthi ; Seidenberger, Katrin ; Markötter, Henning ; Manke, Ingo ; Scholta, Joachim</creator><creatorcontrib>Haußmann, Jan ; Wilhelm, Florian ; Enz, Simon ; Klages, Merle ; Pournemat, Anahid ; Bergbreiter, Christian ; Clark, Joseph Simon ; Duraisamy, Keerthi ; Seidenberger, Katrin ; Markötter, Henning ; Manke, Ingo ; Scholta, Joachim</creatorcontrib><description>Liquid water saturation of gas diffusion layer (GDL) pores limits gas transport leading to poor overall performance in polymer electrolyte membrane fuel cells (PEMFC). A survey of relevant parameters for GDL characterization, useful methods for investigations and the implications of these results to GDL modelling is provided. The GDL structure can be characterized using X-ray based methods. Structural information and surface parameters must be known to model the water distribution itself. Approaches for the determination of spatially resolved and integral surface property data are presented. For example, the inner contact angle can be determined by inverse gas chromatography. Other relevant parameters are the Leverett function, electrical and mechanical parameters such as E module and shear modulus G. Methods and results of the physical characterization are presented. The use of both structural and surface parameters is shown for Monte Carlo (MC) modelling describing the behavior of liquid water inside the porous fibre structure. Furthermore, these results are used to consider local changes in morphology and surface properties of the GDL and to improve full cell computational fluid dynamics (CFD) simulations of PEM fuel cells.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/06917.1279ecst</identifier><language>eng</language><ispartof>ECS transactions, 2015, Vol.69 (17), p.1279-1291</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c191t-6b2bf7af9f44ace5322a3b991c1c2071dce5401021baba321902a7adb89993e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Haußmann, Jan</creatorcontrib><creatorcontrib>Wilhelm, Florian</creatorcontrib><creatorcontrib>Enz, Simon</creatorcontrib><creatorcontrib>Klages, Merle</creatorcontrib><creatorcontrib>Pournemat, Anahid</creatorcontrib><creatorcontrib>Bergbreiter, Christian</creatorcontrib><creatorcontrib>Clark, Joseph Simon</creatorcontrib><creatorcontrib>Duraisamy, Keerthi</creatorcontrib><creatorcontrib>Seidenberger, Katrin</creatorcontrib><creatorcontrib>Markötter, Henning</creatorcontrib><creatorcontrib>Manke, Ingo</creatorcontrib><creatorcontrib>Scholta, Joachim</creatorcontrib><title>GDL and MPL Characterization and Their Relevance to Fuel Cell Modelling</title><title>ECS transactions</title><description>Liquid water saturation of gas diffusion layer (GDL) pores limits gas transport leading to poor overall performance in polymer electrolyte membrane fuel cells (PEMFC). A survey of relevant parameters for GDL characterization, useful methods for investigations and the implications of these results to GDL modelling is provided. The GDL structure can be characterized using X-ray based methods. Structural information and surface parameters must be known to model the water distribution itself. Approaches for the determination of spatially resolved and integral surface property data are presented. For example, the inner contact angle can be determined by inverse gas chromatography. Other relevant parameters are the Leverett function, electrical and mechanical parameters such as E module and shear modulus G. Methods and results of the physical characterization are presented. The use of both structural and surface parameters is shown for Monte Carlo (MC) modelling describing the behavior of liquid water inside the porous fibre structure. Furthermore, these results are used to consider local changes in morphology and surface properties of the GDL and to improve full cell computational fluid dynamics (CFD) simulations of PEM fuel cells.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kEFPg0AUhDdGE2v16nn_ALhvl7K8o0HbmtBoDHfyWB4Wg2B20UR_vVjraSYzmTl8QlyDigESvFEpgo1BW2QXphOxADRZlFpjT49-laX6XFyE8KpUOm_sQmw2d4WkoZG7p0Lme_LkJvbdN03dOByKcs-dl8_c8ycNjuU0yvUH9zLnvpe7sZmlG14uxVlLfeCroy5Fub4v821UPG4e8tsicoAwRWmt69ZSi22SkOOV0ZpMjQgOnFYWmjlLFCgNNdVkNKDSZKmpM0Q0bJYi_rt1fgzBc1u9--6N_FcFqvqlUB0oVP8UzA_GME_P</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Haußmann, Jan</creator><creator>Wilhelm, Florian</creator><creator>Enz, Simon</creator><creator>Klages, Merle</creator><creator>Pournemat, Anahid</creator><creator>Bergbreiter, Christian</creator><creator>Clark, Joseph Simon</creator><creator>Duraisamy, Keerthi</creator><creator>Seidenberger, Katrin</creator><creator>Markötter, Henning</creator><creator>Manke, Ingo</creator><creator>Scholta, Joachim</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>GDL and MPL Characterization and Their Relevance to Fuel Cell Modelling</title><author>Haußmann, Jan ; Wilhelm, Florian ; Enz, Simon ; Klages, Merle ; Pournemat, Anahid ; Bergbreiter, Christian ; Clark, Joseph Simon ; Duraisamy, Keerthi ; Seidenberger, Katrin ; Markötter, Henning ; Manke, Ingo ; Scholta, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-6b2bf7af9f44ace5322a3b991c1c2071dce5401021baba321902a7adb89993e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Haußmann, Jan</creatorcontrib><creatorcontrib>Wilhelm, Florian</creatorcontrib><creatorcontrib>Enz, Simon</creatorcontrib><creatorcontrib>Klages, Merle</creatorcontrib><creatorcontrib>Pournemat, Anahid</creatorcontrib><creatorcontrib>Bergbreiter, Christian</creatorcontrib><creatorcontrib>Clark, Joseph Simon</creatorcontrib><creatorcontrib>Duraisamy, Keerthi</creatorcontrib><creatorcontrib>Seidenberger, Katrin</creatorcontrib><creatorcontrib>Markötter, Henning</creatorcontrib><creatorcontrib>Manke, Ingo</creatorcontrib><creatorcontrib>Scholta, Joachim</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haußmann, Jan</au><au>Wilhelm, Florian</au><au>Enz, Simon</au><au>Klages, Merle</au><au>Pournemat, Anahid</au><au>Bergbreiter, Christian</au><au>Clark, Joseph Simon</au><au>Duraisamy, Keerthi</au><au>Seidenberger, Katrin</au><au>Markötter, Henning</au><au>Manke, Ingo</au><au>Scholta, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GDL and MPL Characterization and Their Relevance to Fuel Cell Modelling</atitle><jtitle>ECS transactions</jtitle><date>2015</date><risdate>2015</risdate><volume>69</volume><issue>17</issue><spage>1279</spage><epage>1291</epage><pages>1279-1291</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>Liquid water saturation of gas diffusion layer (GDL) pores limits gas transport leading to poor overall performance in polymer electrolyte membrane fuel cells (PEMFC). A survey of relevant parameters for GDL characterization, useful methods for investigations and the implications of these results to GDL modelling is provided. The GDL structure can be characterized using X-ray based methods. Structural information and surface parameters must be known to model the water distribution itself. Approaches for the determination of spatially resolved and integral surface property data are presented. For example, the inner contact angle can be determined by inverse gas chromatography. Other relevant parameters are the Leverett function, electrical and mechanical parameters such as E module and shear modulus G. Methods and results of the physical characterization are presented. The use of both structural and surface parameters is shown for Monte Carlo (MC) modelling describing the behavior of liquid water inside the porous fibre structure. Furthermore, these results are used to consider local changes in morphology and surface properties of the GDL and to improve full cell computational fluid dynamics (CFD) simulations of PEM fuel cells.</abstract><doi>10.1149/06917.1279ecst</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2015, Vol.69 (17), p.1279-1291
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_06917_1279ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title GDL and MPL Characterization and Their Relevance to Fuel Cell Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GDL%20and%20MPL%20Characterization%20and%20Their%20Relevance%20to%20Fuel%20Cell%20Modelling&rft.jtitle=ECS%20transactions&rft.au=Hau%C3%9Fmann,%20Jan&rft.date=2015&rft.volume=69&rft.issue=17&rft.spage=1279&rft.epage=1291&rft.pages=1279-1291&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/06917.1279ecst&rft_dat=%3Ccrossref%3E10_1149_06917_1279ecst%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true