Reversible Oxygen-Ion Storage for Solid Oxide Cells
In a rechargeable oxide battery (ROB) a solid oxide cell (SOC) is combined with an integrated iron oxide base storage for oxygen ions. The cell is operated at 800°C alternately as fuel cell and as electrolyser and the storage material regulates the oxygen partial pressure at the fuel electrode in a...
Gespeichert in:
Veröffentlicht in: | ECS transactions 2015, Vol.68 (1), p.3241-3251 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3251 |
---|---|
container_issue | 1 |
container_start_page | 3241 |
container_title | ECS transactions |
container_volume | 68 |
creator | Berger, Cornelius M. Hospach, Andreas Menzler, Norbert H. Guillon, Olivier Bram, Martin |
description | In a rechargeable oxide battery (ROB) a solid oxide cell (SOC) is combined with an integrated iron oxide base storage for oxygen ions. The cell is operated at 800°C alternately as fuel cell and as electrolyser and the storage material regulates the oxygen partial pressure at the fuel electrode in a range of approximately 10
-21
-10
-18
bar. Repeated charging (electrolysis) and discharging (fuel cell mode) can lead to a degradation of the storage material (particle coarsening, layer formation). In this study the influence of additions of Al
2
O
3
, CeO
2
, Mn
3
O
4
, Cr
2
O
3
, TiO
2
, SiO
2
, and
MgO to the Fe
2
O
3
base on these detrimental effects is analysed. Hence, compacted samples are repeatedly oxidised and reduced in a laboratory furnace, where the conditions present in the ROB are simulated. Using XRD and laser microscopy it was found that among the tested oxides only MgO and Al
2
O
3
could mitigate the degradation phenomena to some extent. |
doi_str_mv | 10.1149/06801.3241ecst |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_06801_3241ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_06801_3241ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-bb7986314bd57b26fdb7c7f07e9fa6b32bd8d6bf88583385c47d8432c4daa27d3</originalsourceid><addsrcrecordid>eNo1j81KAzEYRYNYsLZuXecFMib5MklmKYM_hULB6nrIz5cyMnYkGcS-vdXW1b1wORcOIbeCV0Ko5o5ry0UFUgkMZbogc9GAZdqAuTz32mp5Ra5LeedcHxkzJ_CCX5hL7wekm-_DDvdsNe7pdhqz2yFNY6bbcejjcewj0haHoSzJLLmh4M05F-Tt8eG1fWbrzdOqvV-zIEFMzHvTWA1C-VgbL3WK3gSTuMEmOe1B-mij9sna2gLYOigTrQIZVHROmggLUp1-Qx5LyZi6z9x_uHzoBO9-lbs_5e5fGX4AuTJJyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reversible Oxygen-Ion Storage for Solid Oxide Cells</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Berger, Cornelius M. ; Hospach, Andreas ; Menzler, Norbert H. ; Guillon, Olivier ; Bram, Martin</creator><creatorcontrib>Berger, Cornelius M. ; Hospach, Andreas ; Menzler, Norbert H. ; Guillon, Olivier ; Bram, Martin</creatorcontrib><description>In a rechargeable oxide battery (ROB) a solid oxide cell (SOC) is combined with an integrated iron oxide base storage for oxygen ions. The cell is operated at 800°C alternately as fuel cell and as electrolyser and the storage material regulates the oxygen partial pressure at the fuel electrode in a range of approximately 10
-21
-10
-18
bar. Repeated charging (electrolysis) and discharging (fuel cell mode) can lead to a degradation of the storage material (particle coarsening, layer formation). In this study the influence of additions of Al
2
O
3
, CeO
2
, Mn
3
O
4
, Cr
2
O
3
, TiO
2
, SiO
2
, and
MgO to the Fe
2
O
3
base on these detrimental effects is analysed. Hence, compacted samples are repeatedly oxidised and reduced in a laboratory furnace, where the conditions present in the ROB are simulated. Using XRD and laser microscopy it was found that among the tested oxides only MgO and Al
2
O
3
could mitigate the degradation phenomena to some extent.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/06801.3241ecst</identifier><language>eng</language><ispartof>ECS transactions, 2015, Vol.68 (1), p.3241-3251</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-bb7986314bd57b26fdb7c7f07e9fa6b32bd8d6bf88583385c47d8432c4daa27d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Berger, Cornelius M.</creatorcontrib><creatorcontrib>Hospach, Andreas</creatorcontrib><creatorcontrib>Menzler, Norbert H.</creatorcontrib><creatorcontrib>Guillon, Olivier</creatorcontrib><creatorcontrib>Bram, Martin</creatorcontrib><title>Reversible Oxygen-Ion Storage for Solid Oxide Cells</title><title>ECS transactions</title><description>In a rechargeable oxide battery (ROB) a solid oxide cell (SOC) is combined with an integrated iron oxide base storage for oxygen ions. The cell is operated at 800°C alternately as fuel cell and as electrolyser and the storage material regulates the oxygen partial pressure at the fuel electrode in a range of approximately 10
-21
-10
-18
bar. Repeated charging (electrolysis) and discharging (fuel cell mode) can lead to a degradation of the storage material (particle coarsening, layer formation). In this study the influence of additions of Al
2
O
3
, CeO
2
, Mn
3
O
4
, Cr
2
O
3
, TiO
2
, SiO
2
, and
MgO to the Fe
2
O
3
base on these detrimental effects is analysed. Hence, compacted samples are repeatedly oxidised and reduced in a laboratory furnace, where the conditions present in the ROB are simulated. Using XRD and laser microscopy it was found that among the tested oxides only MgO and Al
2
O
3
could mitigate the degradation phenomena to some extent.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1j81KAzEYRYNYsLZuXecFMib5MklmKYM_hULB6nrIz5cyMnYkGcS-vdXW1b1wORcOIbeCV0Ko5o5ry0UFUgkMZbogc9GAZdqAuTz32mp5Ra5LeedcHxkzJ_CCX5hL7wekm-_DDvdsNe7pdhqz2yFNY6bbcejjcewj0haHoSzJLLmh4M05F-Tt8eG1fWbrzdOqvV-zIEFMzHvTWA1C-VgbL3WK3gSTuMEmOe1B-mij9sna2gLYOigTrQIZVHROmggLUp1-Qx5LyZi6z9x_uHzoBO9-lbs_5e5fGX4AuTJJyw</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Berger, Cornelius M.</creator><creator>Hospach, Andreas</creator><creator>Menzler, Norbert H.</creator><creator>Guillon, Olivier</creator><creator>Bram, Martin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Reversible Oxygen-Ion Storage for Solid Oxide Cells</title><author>Berger, Cornelius M. ; Hospach, Andreas ; Menzler, Norbert H. ; Guillon, Olivier ; Bram, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-bb7986314bd57b26fdb7c7f07e9fa6b32bd8d6bf88583385c47d8432c4daa27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Berger, Cornelius M.</creatorcontrib><creatorcontrib>Hospach, Andreas</creatorcontrib><creatorcontrib>Menzler, Norbert H.</creatorcontrib><creatorcontrib>Guillon, Olivier</creatorcontrib><creatorcontrib>Bram, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Cornelius M.</au><au>Hospach, Andreas</au><au>Menzler, Norbert H.</au><au>Guillon, Olivier</au><au>Bram, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible Oxygen-Ion Storage for Solid Oxide Cells</atitle><jtitle>ECS transactions</jtitle><date>2015</date><risdate>2015</risdate><volume>68</volume><issue>1</issue><spage>3241</spage><epage>3251</epage><pages>3241-3251</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>In a rechargeable oxide battery (ROB) a solid oxide cell (SOC) is combined with an integrated iron oxide base storage for oxygen ions. The cell is operated at 800°C alternately as fuel cell and as electrolyser and the storage material regulates the oxygen partial pressure at the fuel electrode in a range of approximately 10
-21
-10
-18
bar. Repeated charging (electrolysis) and discharging (fuel cell mode) can lead to a degradation of the storage material (particle coarsening, layer formation). In this study the influence of additions of Al
2
O
3
, CeO
2
, Mn
3
O
4
, Cr
2
O
3
, TiO
2
, SiO
2
, and
MgO to the Fe
2
O
3
base on these detrimental effects is analysed. Hence, compacted samples are repeatedly oxidised and reduced in a laboratory furnace, where the conditions present in the ROB are simulated. Using XRD and laser microscopy it was found that among the tested oxides only MgO and Al
2
O
3
could mitigate the degradation phenomena to some extent.</abstract><doi>10.1149/06801.3241ecst</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1938-5862 |
ispartof | ECS transactions, 2015, Vol.68 (1), p.3241-3251 |
issn | 1938-5862 1938-6737 |
language | eng |
recordid | cdi_crossref_primary_10_1149_06801_3241ecst |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Reversible Oxygen-Ion Storage for Solid Oxide Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20Oxygen-Ion%20Storage%20for%20Solid%20Oxide%20Cells&rft.jtitle=ECS%20transactions&rft.au=Berger,%20Cornelius%20M.&rft.date=2015&rft.volume=68&rft.issue=1&rft.spage=3241&rft.epage=3251&rft.pages=3241-3251&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/06801.3241ecst&rft_dat=%3Ccrossref%3E10_1149_06801_3241ecst%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |