Surface Composition and Oxygen Transport Properties of LSCF: From Bulk Ceramics to Devices

Although the oxygen surface exchange reactions are of utmost importance for Solid Oxide Fuel Cells and Solid Oxide Electrolyser operation and performance, these reactions are rather poorly understood. One part of the puzzle is understanding the composition of the surfaces and interfaces participatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2015-06, Vol.68 (1), p.557-567
Hauptverfasser: Druce, John, Téllez, Helena, Ishihara, Tatsumi, Kilner, John A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 1
container_start_page 557
container_title ECS transactions
container_volume 68
creator Druce, John
Téllez, Helena
Ishihara, Tatsumi
Kilner, John A.
description Although the oxygen surface exchange reactions are of utmost importance for Solid Oxide Fuel Cells and Solid Oxide Electrolyser operation and performance, these reactions are rather poorly understood. One part of the puzzle is understanding the composition of the surfaces and interfaces participating in the reactions. Ion beam techniques constitute powerful probes of the surface composition, as well as the oxygen transport properties. Here, we use the well-known mixed conducting perovskite LSCF to illustrate how ion beam techniques such as secondary ion mass spectrometry (SIMS) and low energy ion scattering (LEIS) can be used to study fundamental materials properties such as oxygen tracer diffusion and strontium segregation, as well as segregation and impurity migration processes in model electrode structures.
doi_str_mv 10.1149/06801.0557ecst
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1149_06801_0557ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1149_06801_0557ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-c0d8e418545dec47e933f2ac9f0879704e23e1ef64ca12c1836c0030df93bb493</originalsourceid><addsrcrecordid>eNo10L1OwzAUBWALgUQprMx-gYTr2IltNggEkCIVqWVhiVznGgWaOLJT1L49f2U6Zzln-Ai5ZJAyJvQVFApYCnku0cbpiMyY5iopJJfHh56rIjslZzG-AxTfGzkjr8ttcMYiLX0_-thNnR-oGVq62O3fcKCrYIY4-jDR5-BHDFOHkXpH62VZXdMq-J7ebjcftMRg-s5GOnl6h5-dxXhOTpzZRLw45Jy8VPer8jGpFw9P5U2d2CyXU2KhVSiYykXeohUSNecuM1Y7UFJLEJhxZOgKYQ3LLFO8sAAcWqf5ei00n5P079cGH2NA14yh603YNwyaH5nmV6b5l-Ff64BXZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Composition and Oxygen Transport Properties of LSCF: From Bulk Ceramics to Devices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Druce, John ; Téllez, Helena ; Ishihara, Tatsumi ; Kilner, John A.</creator><creatorcontrib>Druce, John ; Téllez, Helena ; Ishihara, Tatsumi ; Kilner, John A.</creatorcontrib><description>Although the oxygen surface exchange reactions are of utmost importance for Solid Oxide Fuel Cells and Solid Oxide Electrolyser operation and performance, these reactions are rather poorly understood. One part of the puzzle is understanding the composition of the surfaces and interfaces participating in the reactions. Ion beam techniques constitute powerful probes of the surface composition, as well as the oxygen transport properties. Here, we use the well-known mixed conducting perovskite LSCF to illustrate how ion beam techniques such as secondary ion mass spectrometry (SIMS) and low energy ion scattering (LEIS) can be used to study fundamental materials properties such as oxygen tracer diffusion and strontium segregation, as well as segregation and impurity migration processes in model electrode structures.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/06801.0557ecst</identifier><language>eng</language><ispartof>ECS transactions, 2015-06, Vol.68 (1), p.557-567</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-c0d8e418545dec47e933f2ac9f0879704e23e1ef64ca12c1836c0030df93bb493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Druce, John</creatorcontrib><creatorcontrib>Téllez, Helena</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><creatorcontrib>Kilner, John A.</creatorcontrib><title>Surface Composition and Oxygen Transport Properties of LSCF: From Bulk Ceramics to Devices</title><title>ECS transactions</title><description>Although the oxygen surface exchange reactions are of utmost importance for Solid Oxide Fuel Cells and Solid Oxide Electrolyser operation and performance, these reactions are rather poorly understood. One part of the puzzle is understanding the composition of the surfaces and interfaces participating in the reactions. Ion beam techniques constitute powerful probes of the surface composition, as well as the oxygen transport properties. Here, we use the well-known mixed conducting perovskite LSCF to illustrate how ion beam techniques such as secondary ion mass spectrometry (SIMS) and low energy ion scattering (LEIS) can be used to study fundamental materials properties such as oxygen tracer diffusion and strontium segregation, as well as segregation and impurity migration processes in model electrode structures.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo10L1OwzAUBWALgUQprMx-gYTr2IltNggEkCIVqWVhiVznGgWaOLJT1L49f2U6Zzln-Ai5ZJAyJvQVFApYCnku0cbpiMyY5iopJJfHh56rIjslZzG-AxTfGzkjr8ttcMYiLX0_-thNnR-oGVq62O3fcKCrYIY4-jDR5-BHDFOHkXpH62VZXdMq-J7ebjcftMRg-s5GOnl6h5-dxXhOTpzZRLw45Jy8VPer8jGpFw9P5U2d2CyXU2KhVSiYykXeohUSNecuM1Y7UFJLEJhxZOgKYQ3LLFO8sAAcWqf5ei00n5P079cGH2NA14yh603YNwyaH5nmV6b5l-Ff64BXZg</recordid><startdate>20150602</startdate><enddate>20150602</enddate><creator>Druce, John</creator><creator>Téllez, Helena</creator><creator>Ishihara, Tatsumi</creator><creator>Kilner, John A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150602</creationdate><title>Surface Composition and Oxygen Transport Properties of LSCF: From Bulk Ceramics to Devices</title><author>Druce, John ; Téllez, Helena ; Ishihara, Tatsumi ; Kilner, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-c0d8e418545dec47e933f2ac9f0879704e23e1ef64ca12c1836c0030df93bb493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Druce, John</creatorcontrib><creatorcontrib>Téllez, Helena</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><creatorcontrib>Kilner, John A.</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Druce, John</au><au>Téllez, Helena</au><au>Ishihara, Tatsumi</au><au>Kilner, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Composition and Oxygen Transport Properties of LSCF: From Bulk Ceramics to Devices</atitle><jtitle>ECS transactions</jtitle><date>2015-06-02</date><risdate>2015</risdate><volume>68</volume><issue>1</issue><spage>557</spage><epage>567</epage><pages>557-567</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>Although the oxygen surface exchange reactions are of utmost importance for Solid Oxide Fuel Cells and Solid Oxide Electrolyser operation and performance, these reactions are rather poorly understood. One part of the puzzle is understanding the composition of the surfaces and interfaces participating in the reactions. Ion beam techniques constitute powerful probes of the surface composition, as well as the oxygen transport properties. Here, we use the well-known mixed conducting perovskite LSCF to illustrate how ion beam techniques such as secondary ion mass spectrometry (SIMS) and low energy ion scattering (LEIS) can be used to study fundamental materials properties such as oxygen tracer diffusion and strontium segregation, as well as segregation and impurity migration processes in model electrode structures.</abstract><doi>10.1149/06801.0557ecst</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2015-06, Vol.68 (1), p.557-567
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_06801_0557ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Surface Composition and Oxygen Transport Properties of LSCF: From Bulk Ceramics to Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Composition%20and%20Oxygen%20Transport%20Properties%20of%20LSCF:%20From%20Bulk%20Ceramics%20to%20Devices&rft.jtitle=ECS%20transactions&rft.au=Druce,%20John&rft.date=2015-06-02&rft.volume=68&rft.issue=1&rft.spage=557&rft.epage=567&rft.pages=557-567&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/06801.0557ecst&rft_dat=%3Ccrossref%3E10_1149_06801_0557ecst%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true