Nanostructured Ni/YSZ Anodes: Fabrication and Performance Analysis

The design state of the art SOFC anodes limit the electrooxidation reaction inherently by its µm-scaled microstructure. An increase in cell performance of anode supported SOFCs (ASC) is achieved by a method, which induces the formation of an additional nanostructured Ni/YSZ layer in the electrochemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS transactions 2013-01, Vol.57 (1), p.1469-1478
Hauptverfasser: Szász, Julian, Klotz, Dino, Störmer, Heike, Gerthsen, Dagmar, Ivers-Tiffée, Ellen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1478
container_issue 1
container_start_page 1469
container_title ECS transactions
container_volume 57
creator Szász, Julian
Klotz, Dino
Störmer, Heike
Gerthsen, Dagmar
Ivers-Tiffée, Ellen
description The design state of the art SOFC anodes limit the electrooxidation reaction inherently by its µm-scaled microstructure. An increase in cell performance of anode supported SOFCs (ASC) is achieved by a method, which induces the formation of an additional nanostructured Ni/YSZ layer in the electrochemically active region of the anode. This in-operando technique is based on a short-time application of a high current in reverse direction (reverse current treatment - RCT). In this contribution we investigate the nanostructured layer in a new model anode setup on a single crystalline YSZ substrate. This new setup guarantees homogenous experimental conditions due to simplified cell geometry. It is possible to control the RCT parameters and fabricate nanostructured layer with thicknesses up to 1100 nm and grain sizes between 10...20 nm. After conducting the RCT, a dense ~200 nm thin Ni film is still remaining, covering the whole nanostructured layer. Gas impermeability of the Ni film inhibits at first sufficient fuel gas access to the electrochemically active region in the nanostructured layer. Open porosity in the dense Ni film is thus necessary to characterize the electrochemical performance of the nanostructured model anode by means of impedance spectroscopy. Therefore an oxidation-reduction cycle is introduced leading to an impressively low anode polarization resistance compared to technical SOFC anodes. Furthermore, TEM analysis provides new information of the serve interaction of YSZ with the adjacent Ni phase during RCT, which is essential for a controlling and optimizing the fabrication process.
doi_str_mv 10.1149/05701.1469ecst
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_05701_1469ecst</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1149/05701.1469ecst</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-10c2ff2ca7979cbe97c94e5618096a671bbff93e8b210b024e0beeff3f3f90593</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqWwMmdGSuuLEztmKxUFpKogAQMslu2cJVdtXNnJ0H_fQMuIbvhu-N7p9Ai5BToBKOWUVoLCBEou0abujIxAsjrngonz017VvLgkVymtKeUDI0bkYaXbkLrY266P2GQrP_16_85mbWgw3WcLbaK3uvOhzXTbZG8YXYhb3VocOnqzTz5dkwunNwlvTjkmn4vHj_lzvnx9epnPlrllAF0O1BbOFVYLKaQ1KIWVJVYcaiq55gKMcU4yrE0B1NCiRGoQnWPDSFpJNiaT410bQ0oRndpFv9Vxr4CqHwPq14D6MzAAd0fAh51ahz4OD6f_ygdiZVzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructured Ni/YSZ Anodes: Fabrication and Performance Analysis</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Szász, Julian ; Klotz, Dino ; Störmer, Heike ; Gerthsen, Dagmar ; Ivers-Tiffée, Ellen</creator><creatorcontrib>Szász, Julian ; Klotz, Dino ; Störmer, Heike ; Gerthsen, Dagmar ; Ivers-Tiffée, Ellen</creatorcontrib><description>The design state of the art SOFC anodes limit the electrooxidation reaction inherently by its µm-scaled microstructure. An increase in cell performance of anode supported SOFCs (ASC) is achieved by a method, which induces the formation of an additional nanostructured Ni/YSZ layer in the electrochemically active region of the anode. This in-operando technique is based on a short-time application of a high current in reverse direction (reverse current treatment - RCT). In this contribution we investigate the nanostructured layer in a new model anode setup on a single crystalline YSZ substrate. This new setup guarantees homogenous experimental conditions due to simplified cell geometry. It is possible to control the RCT parameters and fabricate nanostructured layer with thicknesses up to 1100 nm and grain sizes between 10...20 nm. After conducting the RCT, a dense ~200 nm thin Ni film is still remaining, covering the whole nanostructured layer. Gas impermeability of the Ni film inhibits at first sufficient fuel gas access to the electrochemically active region in the nanostructured layer. Open porosity in the dense Ni film is thus necessary to characterize the electrochemical performance of the nanostructured model anode by means of impedance spectroscopy. Therefore an oxidation-reduction cycle is introduced leading to an impressively low anode polarization resistance compared to technical SOFC anodes. Furthermore, TEM analysis provides new information of the serve interaction of YSZ with the adjacent Ni phase during RCT, which is essential for a controlling and optimizing the fabrication process.</description><identifier>ISSN: 1938-5862</identifier><identifier>EISSN: 1938-6737</identifier><identifier>DOI: 10.1149/05701.1469ecst</identifier><language>eng</language><publisher>The Electrochemical Society, Inc</publisher><ispartof>ECS transactions, 2013-01, Vol.57 (1), p.1469-1478</ispartof><rights>2013 ECS - The Electrochemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-10c2ff2ca7979cbe97c94e5618096a671bbff93e8b210b024e0beeff3f3f90593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/05701.1469ecst/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Szász, Julian</creatorcontrib><creatorcontrib>Klotz, Dino</creatorcontrib><creatorcontrib>Störmer, Heike</creatorcontrib><creatorcontrib>Gerthsen, Dagmar</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><title>Nanostructured Ni/YSZ Anodes: Fabrication and Performance Analysis</title><title>ECS transactions</title><addtitle>ECS Trans</addtitle><description>The design state of the art SOFC anodes limit the electrooxidation reaction inherently by its µm-scaled microstructure. An increase in cell performance of anode supported SOFCs (ASC) is achieved by a method, which induces the formation of an additional nanostructured Ni/YSZ layer in the electrochemically active region of the anode. This in-operando technique is based on a short-time application of a high current in reverse direction (reverse current treatment - RCT). In this contribution we investigate the nanostructured layer in a new model anode setup on a single crystalline YSZ substrate. This new setup guarantees homogenous experimental conditions due to simplified cell geometry. It is possible to control the RCT parameters and fabricate nanostructured layer with thicknesses up to 1100 nm and grain sizes between 10...20 nm. After conducting the RCT, a dense ~200 nm thin Ni film is still remaining, covering the whole nanostructured layer. Gas impermeability of the Ni film inhibits at first sufficient fuel gas access to the electrochemically active region in the nanostructured layer. Open porosity in the dense Ni film is thus necessary to characterize the electrochemical performance of the nanostructured model anode by means of impedance spectroscopy. Therefore an oxidation-reduction cycle is introduced leading to an impressively low anode polarization resistance compared to technical SOFC anodes. Furthermore, TEM analysis provides new information of the serve interaction of YSZ with the adjacent Ni phase during RCT, which is essential for a controlling and optimizing the fabrication process.</description><issn>1938-5862</issn><issn>1938-6737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqWwMmdGSuuLEztmKxUFpKogAQMslu2cJVdtXNnJ0H_fQMuIbvhu-N7p9Ai5BToBKOWUVoLCBEou0abujIxAsjrngonz017VvLgkVymtKeUDI0bkYaXbkLrY266P2GQrP_16_85mbWgw3WcLbaK3uvOhzXTbZG8YXYhb3VocOnqzTz5dkwunNwlvTjkmn4vHj_lzvnx9epnPlrllAF0O1BbOFVYLKaQ1KIWVJVYcaiq55gKMcU4yrE0B1NCiRGoQnWPDSFpJNiaT410bQ0oRndpFv9Vxr4CqHwPq14D6MzAAd0fAh51ahz4OD6f_ygdiZVzo</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Szász, Julian</creator><creator>Klotz, Dino</creator><creator>Störmer, Heike</creator><creator>Gerthsen, Dagmar</creator><creator>Ivers-Tiffée, Ellen</creator><general>The Electrochemical Society, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130101</creationdate><title>Nanostructured Ni/YSZ Anodes: Fabrication and Performance Analysis</title><author>Szász, Julian ; Klotz, Dino ; Störmer, Heike ; Gerthsen, Dagmar ; Ivers-Tiffée, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-10c2ff2ca7979cbe97c94e5618096a671bbff93e8b210b024e0beeff3f3f90593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Szász, Julian</creatorcontrib><creatorcontrib>Klotz, Dino</creatorcontrib><creatorcontrib>Störmer, Heike</creatorcontrib><creatorcontrib>Gerthsen, Dagmar</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><collection>CrossRef</collection><jtitle>ECS transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szász, Julian</au><au>Klotz, Dino</au><au>Störmer, Heike</au><au>Gerthsen, Dagmar</au><au>Ivers-Tiffée, Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured Ni/YSZ Anodes: Fabrication and Performance Analysis</atitle><jtitle>ECS transactions</jtitle><addtitle>ECS Trans</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>57</volume><issue>1</issue><spage>1469</spage><epage>1478</epage><pages>1469-1478</pages><issn>1938-5862</issn><eissn>1938-6737</eissn><abstract>The design state of the art SOFC anodes limit the electrooxidation reaction inherently by its µm-scaled microstructure. An increase in cell performance of anode supported SOFCs (ASC) is achieved by a method, which induces the formation of an additional nanostructured Ni/YSZ layer in the electrochemically active region of the anode. This in-operando technique is based on a short-time application of a high current in reverse direction (reverse current treatment - RCT). In this contribution we investigate the nanostructured layer in a new model anode setup on a single crystalline YSZ substrate. This new setup guarantees homogenous experimental conditions due to simplified cell geometry. It is possible to control the RCT parameters and fabricate nanostructured layer with thicknesses up to 1100 nm and grain sizes between 10...20 nm. After conducting the RCT, a dense ~200 nm thin Ni film is still remaining, covering the whole nanostructured layer. Gas impermeability of the Ni film inhibits at first sufficient fuel gas access to the electrochemically active region in the nanostructured layer. Open porosity in the dense Ni film is thus necessary to characterize the electrochemical performance of the nanostructured model anode by means of impedance spectroscopy. Therefore an oxidation-reduction cycle is introduced leading to an impressively low anode polarization resistance compared to technical SOFC anodes. Furthermore, TEM analysis provides new information of the serve interaction of YSZ with the adjacent Ni phase during RCT, which is essential for a controlling and optimizing the fabrication process.</abstract><pub>The Electrochemical Society, Inc</pub><doi>10.1149/05701.1469ecst</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1938-5862
ispartof ECS transactions, 2013-01, Vol.57 (1), p.1469-1478
issn 1938-5862
1938-6737
language eng
recordid cdi_crossref_primary_10_1149_05701_1469ecst
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Nanostructured Ni/YSZ Anodes: Fabrication and Performance Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20Ni/YSZ%20Anodes:%20Fabrication%20and%20Performance%20Analysis&rft.jtitle=ECS%20transactions&rft.au=Sz%C3%A1sz,%20Julian&rft.date=2013-01-01&rft.volume=57&rft.issue=1&rft.spage=1469&rft.epage=1478&rft.pages=1469-1478&rft.issn=1938-5862&rft.eissn=1938-6737&rft_id=info:doi/10.1149/05701.1469ecst&rft_dat=%3Ciop_cross%3E10.1149/05701.1469ecst%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true