Recent Advances of Foundation Language Models-based Continual Learning: A Survey
Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2025-05, Vol.57 (5), p.1-38 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 57 |
creator | Yang, Yutao Zhou, Jie Ding, Xuanwen Huai, Tianyu Liu, Shunyu Chen, Qin Xie, Yuan He, Liang |
description | Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge through pre-training on extensive unsupervised datasets with a vast number of parameters. Despite these capabilities, LMs still struggle with catastrophic forgetting, hindering their ability to learn continuously like humans. To address this, continual learning (CL) methodologies have been introduced, allowing LMs to adapt to new tasks while retaining learned knowledge. However, a systematic taxonomy of existing approaches and a comparison of their performance are still lacking. In this paper, we delve into a comprehensive review, summarization, and classification of the existing literature on CL-based approaches applied to foundation language models, such as pre-trained language models (PLMs), large language models (LLMs) and vision-language models (VLMs). We divide these studies into offline and online CL, which consist of traditional methods, parameter-efficient-based methods, instruction tuning-based methods and continual pre-training methods. Additionally, we outline the typical datasets and metrics employed in CL research and provide a detailed analysis of the challenges and future work for LMs-based continual learning. |
doi_str_mv | 10.1145/3705725 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3705725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3705725</sourcerecordid><originalsourceid>FETCH-LOGICAL-a845-a3cc9e527e2334a9908580982a2ccd6a02a692bc488ee378bcc2fe3d4875dbb23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZx72p2rqJvvjITd6VYFSKKdh9eZl5KpJ1IJin031tpdXUX93AWh7FrAXdCaHOvLBgrzQmbCGNsZpUWp2wCKocMFMA5u0jpCwCkFvmEvX-QpzjwWdhi9JR41_BFN8aAQ9tFXmJcjbgi_toFWqesxkSBz7s4tHHENS8J-9jG1QOf8c-x39Lukp01uE50ddwpWy4el_PnrHx7epnPygydNhkq7wsy0pJUSmNRgDMOCidReh9yBIl5IWuvnSNS1tXey4ZU0M6aUNdSTdntQev7LqWemuq7bzfY7yoB1W-H6thhT94cSPSbf-jv_AEotVcq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent Advances of Foundation Language Models-based Continual Learning: A Survey</title><source>ACM Digital Library Complete</source><creator>Yang, Yutao ; Zhou, Jie ; Ding, Xuanwen ; Huai, Tianyu ; Liu, Shunyu ; Chen, Qin ; Xie, Yuan ; He, Liang</creator><creatorcontrib>Yang, Yutao ; Zhou, Jie ; Ding, Xuanwen ; Huai, Tianyu ; Liu, Shunyu ; Chen, Qin ; Xie, Yuan ; He, Liang</creatorcontrib><description>Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge through pre-training on extensive unsupervised datasets with a vast number of parameters. Despite these capabilities, LMs still struggle with catastrophic forgetting, hindering their ability to learn continuously like humans. To address this, continual learning (CL) methodologies have been introduced, allowing LMs to adapt to new tasks while retaining learned knowledge. However, a systematic taxonomy of existing approaches and a comparison of their performance are still lacking. In this paper, we delve into a comprehensive review, summarization, and classification of the existing literature on CL-based approaches applied to foundation language models, such as pre-trained language models (PLMs), large language models (LLMs) and vision-language models (VLMs). We divide these studies into offline and online CL, which consist of traditional methods, parameter-efficient-based methods, instruction tuning-based methods and continual pre-training methods. Additionally, we outline the typical datasets and metrics employed in CL research and provide a detailed analysis of the challenges and future work for LMs-based continual learning.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3705725</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Natural language processing</subject><ispartof>ACM computing surveys, 2025-05, Vol.57 (5), p.1-38</ispartof><rights>Copyright held by the owner/author(s). Publication rights licensed to ACM.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a845-a3cc9e527e2334a9908580982a2ccd6a02a692bc488ee378bcc2fe3d4875dbb23</cites><orcidid>0000-0001-6446-0426 ; 0009-0008-5091-7577 ; 0000-0002-5602-1877 ; 0000-0002-2589-0164 ; 0000-0002-4723-5486 ; 0009-0002-2598-2365 ; 0009-0000-3573-9962 ; 0000-0001-6945-7437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Yutao</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ding, Xuanwen</creatorcontrib><creatorcontrib>Huai, Tianyu</creatorcontrib><creatorcontrib>Liu, Shunyu</creatorcontrib><creatorcontrib>Chen, Qin</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><title>Recent Advances of Foundation Language Models-based Continual Learning: A Survey</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge through pre-training on extensive unsupervised datasets with a vast number of parameters. Despite these capabilities, LMs still struggle with catastrophic forgetting, hindering their ability to learn continuously like humans. To address this, continual learning (CL) methodologies have been introduced, allowing LMs to adapt to new tasks while retaining learned knowledge. However, a systematic taxonomy of existing approaches and a comparison of their performance are still lacking. In this paper, we delve into a comprehensive review, summarization, and classification of the existing literature on CL-based approaches applied to foundation language models, such as pre-trained language models (PLMs), large language models (LLMs) and vision-language models (VLMs). We divide these studies into offline and online CL, which consist of traditional methods, parameter-efficient-based methods, instruction tuning-based methods and continual pre-training methods. Additionally, we outline the typical datasets and metrics employed in CL research and provide a detailed analysis of the challenges and future work for LMs-based continual learning.</description><subject>Computing methodologies</subject><subject>Natural language processing</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRsFZx72p2rqJvvjITd6VYFSKKdh9eZl5KpJ1IJin031tpdXUX93AWh7FrAXdCaHOvLBgrzQmbCGNsZpUWp2wCKocMFMA5u0jpCwCkFvmEvX-QpzjwWdhi9JR41_BFN8aAQ9tFXmJcjbgi_toFWqesxkSBz7s4tHHENS8J-9jG1QOf8c-x39Lukp01uE50ddwpWy4el_PnrHx7epnPygydNhkq7wsy0pJUSmNRgDMOCidReh9yBIl5IWuvnSNS1tXey4ZU0M6aUNdSTdntQev7LqWemuq7bzfY7yoB1W-H6thhT94cSPSbf-jv_AEotVcq</recordid><startdate>20250531</startdate><enddate>20250531</enddate><creator>Yang, Yutao</creator><creator>Zhou, Jie</creator><creator>Ding, Xuanwen</creator><creator>Huai, Tianyu</creator><creator>Liu, Shunyu</creator><creator>Chen, Qin</creator><creator>Xie, Yuan</creator><creator>He, Liang</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6446-0426</orcidid><orcidid>https://orcid.org/0009-0008-5091-7577</orcidid><orcidid>https://orcid.org/0000-0002-5602-1877</orcidid><orcidid>https://orcid.org/0000-0002-2589-0164</orcidid><orcidid>https://orcid.org/0000-0002-4723-5486</orcidid><orcidid>https://orcid.org/0009-0002-2598-2365</orcidid><orcidid>https://orcid.org/0009-0000-3573-9962</orcidid><orcidid>https://orcid.org/0000-0001-6945-7437</orcidid></search><sort><creationdate>20250531</creationdate><title>Recent Advances of Foundation Language Models-based Continual Learning: A Survey</title><author>Yang, Yutao ; Zhou, Jie ; Ding, Xuanwen ; Huai, Tianyu ; Liu, Shunyu ; Chen, Qin ; Xie, Yuan ; He, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a845-a3cc9e527e2334a9908580982a2ccd6a02a692bc488ee378bcc2fe3d4875dbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computing methodologies</topic><topic>Natural language processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yutao</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Ding, Xuanwen</creatorcontrib><creatorcontrib>Huai, Tianyu</creatorcontrib><creatorcontrib>Liu, Shunyu</creatorcontrib><creatorcontrib>Chen, Qin</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><collection>CrossRef</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yutao</au><au>Zhou, Jie</au><au>Ding, Xuanwen</au><au>Huai, Tianyu</au><au>Liu, Shunyu</au><au>Chen, Qin</au><au>Xie, Yuan</au><au>He, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances of Foundation Language Models-based Continual Learning: A Survey</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2025-05-31</date><risdate>2025</risdate><volume>57</volume><issue>5</issue><spage>1</spage><epage>38</epage><pages>1-38</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge through pre-training on extensive unsupervised datasets with a vast number of parameters. Despite these capabilities, LMs still struggle with catastrophic forgetting, hindering their ability to learn continuously like humans. To address this, continual learning (CL) methodologies have been introduced, allowing LMs to adapt to new tasks while retaining learned knowledge. However, a systematic taxonomy of existing approaches and a comparison of their performance are still lacking. In this paper, we delve into a comprehensive review, summarization, and classification of the existing literature on CL-based approaches applied to foundation language models, such as pre-trained language models (PLMs), large language models (LLMs) and vision-language models (VLMs). We divide these studies into offline and online CL, which consist of traditional methods, parameter-efficient-based methods, instruction tuning-based methods and continual pre-training methods. Additionally, we outline the typical datasets and metrics employed in CL research and provide a detailed analysis of the challenges and future work for LMs-based continual learning.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3705725</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-6446-0426</orcidid><orcidid>https://orcid.org/0009-0008-5091-7577</orcidid><orcidid>https://orcid.org/0000-0002-5602-1877</orcidid><orcidid>https://orcid.org/0000-0002-2589-0164</orcidid><orcidid>https://orcid.org/0000-0002-4723-5486</orcidid><orcidid>https://orcid.org/0009-0002-2598-2365</orcidid><orcidid>https://orcid.org/0009-0000-3573-9962</orcidid><orcidid>https://orcid.org/0000-0001-6945-7437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2025-05, Vol.57 (5), p.1-38 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3705725 |
source | ACM Digital Library Complete |
subjects | Computing methodologies Natural language processing |
title | Recent Advances of Foundation Language Models-based Continual Learning: A Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20of%20Foundation%20Language%20Models-based%20Continual%20Learning:%20A%20Survey&rft.jtitle=ACM%20computing%20surveys&rft.au=Yang,%20Yutao&rft.date=2025-05-31&rft.volume=57&rft.issue=5&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3705725&rft_dat=%3Cacm_cross%3E3705725%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |