Orbit-finite linear programming
An infinite set is orbit-finite if, up to permutations of atoms, it has only finitely many elements. We study a generalisation of linear programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide a decision procedure for che...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of the ACM |
container_volume | |
creator | Ghosh, Arka Hofman, Piotr Lasota, S awomir |
description | An infinite set is orbit-finite if, up to permutations of atoms, it has only finitely many elements. We study a generalisation of linear programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide a decision procedure for checking if such a system has a real solution, and for computing the minimal/maximal value of a linear objective function over the solution set. We also show undecidability of these problems in case when only integer solutions are considered. Therefore orbit-finite linear programming is decidable, while orbit-finite integer linear programming is not. |
doi_str_mv | 10.1145/3703909 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3703909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3703909</sourcerecordid><originalsourceid>FETCH-LOGICAL-a849-46411adc50c07f6b6acd967b10e9d875b38a2f89fc24fd7909b464123365fd0e3</originalsourceid><addsrcrecordid>eNo9j71rAkEUxBdJwIsJ6W1il2rj29uv2zJITAKCjYXd8fZLVrxTdm3y3-dEk-oxvN8MM4Q8M3hjTMg518ANmBGpmJSaai63d6QCAEGlYGxMHkrZDxJq0BV5WWebzjSmPp3D7JD6gHl2ysddxq5L_e6R3Ec8lPB0uxOyWX5sFl90tf78XryvKDbCUKGGZPROggMdlVXovFHaMgjGN1pa3mAdGxNdLaLXQz17sdScKxk9BD4hr9dYl4-l5BDbU04d5p-WQXuZ1d5mDeT0SqLr_qG_5y-ufEWp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orbit-finite linear programming</title><source>ACM Digital Library</source><creator>Ghosh, Arka ; Hofman, Piotr ; Lasota, S awomir</creator><creatorcontrib>Ghosh, Arka ; Hofman, Piotr ; Lasota, S awomir</creatorcontrib><description>An infinite set is orbit-finite if, up to permutations of atoms, it has only finitely many elements. We study a generalisation of linear programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide a decision procedure for checking if such a system has a real solution, and for computing the minimal/maximal value of a linear objective function over the solution set. We also show undecidability of these problems in case when only integer solutions are considered. Therefore orbit-finite linear programming is decidable, while orbit-finite integer linear programming is not.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3703909</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Integer programming ; Linear programming ; Theory of computation</subject><ispartof>Journal of the ACM, 2024-11</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a849-46411adc50c07f6b6acd967b10e9d875b38a2f89fc24fd7909b464123365fd0e3</cites><orcidid>0000-0003-3839-8459 ; 0000-0001-8674-4470 ; 0000-0001-9866-3723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghosh, Arka</creatorcontrib><creatorcontrib>Hofman, Piotr</creatorcontrib><creatorcontrib>Lasota, S awomir</creatorcontrib><title>Orbit-finite linear programming</title><title>Journal of the ACM</title><addtitle>ACM JACM</addtitle><description>An infinite set is orbit-finite if, up to permutations of atoms, it has only finitely many elements. We study a generalisation of linear programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide a decision procedure for checking if such a system has a real solution, and for computing the minimal/maximal value of a linear objective function over the solution set. We also show undecidability of these problems in case when only integer solutions are considered. Therefore orbit-finite linear programming is decidable, while orbit-finite integer linear programming is not.</description><subject>Integer programming</subject><subject>Linear programming</subject><subject>Theory of computation</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j71rAkEUxBdJwIsJ6W1il2rj29uv2zJITAKCjYXd8fZLVrxTdm3y3-dEk-oxvN8MM4Q8M3hjTMg518ANmBGpmJSaai63d6QCAEGlYGxMHkrZDxJq0BV5WWebzjSmPp3D7JD6gHl2ysddxq5L_e6R3Ec8lPB0uxOyWX5sFl90tf78XryvKDbCUKGGZPROggMdlVXovFHaMgjGN1pa3mAdGxNdLaLXQz17sdScKxk9BD4hr9dYl4-l5BDbU04d5p-WQXuZ1d5mDeT0SqLr_qG_5y-ufEWp</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Ghosh, Arka</creator><creator>Hofman, Piotr</creator><creator>Lasota, S awomir</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3839-8459</orcidid><orcidid>https://orcid.org/0000-0001-8674-4470</orcidid><orcidid>https://orcid.org/0000-0001-9866-3723</orcidid></search><sort><creationdate>20241111</creationdate><title>Orbit-finite linear programming</title><author>Ghosh, Arka ; Hofman, Piotr ; Lasota, S awomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a849-46411adc50c07f6b6acd967b10e9d875b38a2f89fc24fd7909b464123365fd0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Integer programming</topic><topic>Linear programming</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Arka</creatorcontrib><creatorcontrib>Hofman, Piotr</creatorcontrib><creatorcontrib>Lasota, S awomir</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Arka</au><au>Hofman, Piotr</au><au>Lasota, S awomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbit-finite linear programming</atitle><jtitle>Journal of the ACM</jtitle><stitle>ACM JACM</stitle><date>2024-11-11</date><risdate>2024</risdate><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>An infinite set is orbit-finite if, up to permutations of atoms, it has only finitely many elements. We study a generalisation of linear programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide a decision procedure for checking if such a system has a real solution, and for computing the minimal/maximal value of a linear objective function over the solution set. We also show undecidability of these problems in case when only integer solutions are considered. Therefore orbit-finite linear programming is decidable, while orbit-finite integer linear programming is not.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3703909</doi><orcidid>https://orcid.org/0000-0003-3839-8459</orcidid><orcidid>https://orcid.org/0000-0001-8674-4470</orcidid><orcidid>https://orcid.org/0000-0001-9866-3723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 2024-11 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_crossref_primary_10_1145_3703909 |
source | ACM Digital Library |
subjects | Integer programming Linear programming Theory of computation |
title | Orbit-finite linear programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbit-finite%20linear%20programming&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Ghosh,%20Arka&rft.date=2024-11-11&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3703909&rft_dat=%3Cacm_cross%3E3703909%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |