Evaluating Large Language Models as Virtual Annotators for Time-series Physical Sensing Data

Traditional human-in-the-loop-based annotation for time-series data like inertial data often requires access to alternate modalities like video or audio from the environment. These alternate sources provide the necessary information to the human annotator, as the raw numeric data is often too obfusc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on intelligent systems and technology 2024-09
Hauptverfasser: Hota, Aritra, Chatterjee, Soumyajit, Chakraborty, Sandip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!