LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops
Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure lon...
Gespeichert in:
Veröffentlicht in: | ACM transactions on information systems 2025-01, Vol.43 (1), p.1-29, Article 11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on information systems |
container_volume | 43 |
creator | Xu, Chen Ye, Xiaopeng Xu, Jun Zhang, Xiao Shen, Weiran Wen, Ji-Rong |
description | Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term. |
doi_str_mv | 10.1145/3695867 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3695867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3695867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517-4ef232f133e6a547ba8224034d94f5f473402cfd8dad76afbc93d96ae627d74c3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7i3lV3rqJ5J3Ung1WhxUEKLsudPKRqmyHx-e_tMKOrc889H2dxEDql5IJSIS-5KqVReg_NqJQGM6PM_nQTobChxhyio5xfCJm8IjP0VLdL3DTVVdHGL0iuqOP4jFufhmKZ4mfvfCoa-MZNPxYV9Gn0ORcf4-b96G0cBj86eO_jlHrvVmBfp4a4zsfoIMBb9ic7naO2umkXd7h-uL1fXNcYJNVY-MA4C5Rzr0AKvQLDmCBcuFIEGYTmgjAbnHHgtIKwsiV3pQKvmHZaWD5H59tam2LOyYdunfoB0k9HSbeZo9vNMZFnWxLs8A_9hb9uQVlR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</title><source>ACM Digital Library Complete</source><creator>Xu, Chen ; Ye, Xiaopeng ; Xu, Jun ; Zhang, Xiao ; Shen, Weiran ; Wen, Ji-Rong</creator><creatorcontrib>Xu, Chen ; Ye, Xiaopeng ; Xu, Jun ; Zhang, Xiao ; Shen, Weiran ; Wen, Ji-Rong</creatorcontrib><description>Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3695867</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Information retrieval ; Information systems</subject><ispartof>ACM transactions on information systems, 2025-01, Vol.43 (1), p.1-29, Article 11</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a517-4ef232f133e6a547ba8224034d94f5f473402cfd8dad76afbc93d96ae627d74c3</cites><orcidid>0000-0001-7170-111X ; 0000-0003-4366-9276 ; 0009-0003-1896-0309 ; 0000-0001-7397-5632 ; 0000-0002-3070-9358 ; 0000-0002-9777-9676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3695867$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Ye, Xiaopeng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Shen, Weiran</creatorcontrib><creatorcontrib>Wen, Ji-Rong</creatorcontrib><title>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.</description><subject>Information retrieval</subject><subject>Information systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOI7i3lV3rqJ5J3Ung1WhxUEKLsudPKRqmyHx-e_tMKOrc889H2dxEDql5IJSIS-5KqVReg_NqJQGM6PM_nQTobChxhyio5xfCJm8IjP0VLdL3DTVVdHGL0iuqOP4jFufhmKZ4mfvfCoa-MZNPxYV9Gn0ORcf4-b96G0cBj86eO_jlHrvVmBfp4a4zsfoIMBb9ic7naO2umkXd7h-uL1fXNcYJNVY-MA4C5Rzr0AKvQLDmCBcuFIEGYTmgjAbnHHgtIKwsiV3pQKvmHZaWD5H59tam2LOyYdunfoB0k9HSbeZo9vNMZFnWxLs8A_9hb9uQVlR</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Xu, Chen</creator><creator>Ye, Xiaopeng</creator><creator>Xu, Jun</creator><creator>Zhang, Xiao</creator><creator>Shen, Weiran</creator><creator>Wen, Ji-Rong</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7170-111X</orcidid><orcidid>https://orcid.org/0000-0003-4366-9276</orcidid><orcidid>https://orcid.org/0009-0003-1896-0309</orcidid><orcidid>https://orcid.org/0000-0001-7397-5632</orcidid><orcidid>https://orcid.org/0000-0002-3070-9358</orcidid><orcidid>https://orcid.org/0000-0002-9777-9676</orcidid></search><sort><creationdate>20250131</creationdate><title>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</title><author>Xu, Chen ; Ye, Xiaopeng ; Xu, Jun ; Zhang, Xiao ; Shen, Weiran ; Wen, Ji-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517-4ef232f133e6a547ba8224034d94f5f473402cfd8dad76afbc93d96ae627d74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Information retrieval</topic><topic>Information systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Ye, Xiaopeng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Shen, Weiran</creatorcontrib><creatorcontrib>Wen, Ji-Rong</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chen</au><au>Ye, Xiaopeng</au><au>Xu, Jun</au><au>Zhang, Xiao</au><au>Shen, Weiran</au><au>Wen, Ji-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2025-01-31</date><risdate>2025</risdate><volume>43</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><artnum>11</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3695867</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7170-111X</orcidid><orcidid>https://orcid.org/0000-0003-4366-9276</orcidid><orcidid>https://orcid.org/0009-0003-1896-0309</orcidid><orcidid>https://orcid.org/0000-0001-7397-5632</orcidid><orcidid>https://orcid.org/0000-0002-3070-9358</orcidid><orcidid>https://orcid.org/0000-0002-9777-9676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-8188 |
ispartof | ACM transactions on information systems, 2025-01, Vol.43 (1), p.1-29, Article 11 |
issn | 1046-8188 1558-2868 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3695867 |
source | ACM Digital Library Complete |
subjects | Information retrieval Information systems |
title | LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LTP-MMF:%20Toward%20Long-Term%20Provider%20Max-Min%20Fairness%20under%20Recommendation%20Feedback%20Loops&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Xu,%20Chen&rft.date=2025-01-31&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.artnum=11&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3695867&rft_dat=%3Cacm_cross%3E3695867%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |