LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops

Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure lon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2025-01, Vol.43 (1), p.1-29, Article 11
Hauptverfasser: Xu, Chen, Ye, Xiaopeng, Xu, Jun, Zhang, Xiao, Shen, Weiran, Wen, Ji-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 1
container_title ACM transactions on information systems
container_volume 43
creator Xu, Chen
Ye, Xiaopeng
Xu, Jun
Zhang, Xiao
Shen, Weiran
Wen, Ji-Rong
description Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.
doi_str_mv 10.1145/3695867
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3695867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3695867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517-4ef232f133e6a547ba8224034d94f5f473402cfd8dad76afbc93d96ae627d74c3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7i3lV3rqJ5J3Ung1WhxUEKLsudPKRqmyHx-e_tMKOrc889H2dxEDql5IJSIS-5KqVReg_NqJQGM6PM_nQTobChxhyio5xfCJm8IjP0VLdL3DTVVdHGL0iuqOP4jFufhmKZ4mfvfCoa-MZNPxYV9Gn0ORcf4-b96G0cBj86eO_jlHrvVmBfp4a4zsfoIMBb9ic7naO2umkXd7h-uL1fXNcYJNVY-MA4C5Rzr0AKvQLDmCBcuFIEGYTmgjAbnHHgtIKwsiV3pQKvmHZaWD5H59tam2LOyYdunfoB0k9HSbeZo9vNMZFnWxLs8A_9hb9uQVlR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</title><source>ACM Digital Library Complete</source><creator>Xu, Chen ; Ye, Xiaopeng ; Xu, Jun ; Zhang, Xiao ; Shen, Weiran ; Wen, Ji-Rong</creator><creatorcontrib>Xu, Chen ; Ye, Xiaopeng ; Xu, Jun ; Zhang, Xiao ; Shen, Weiran ; Wen, Ji-Rong</creatorcontrib><description>Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3695867</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Information retrieval ; Information systems</subject><ispartof>ACM transactions on information systems, 2025-01, Vol.43 (1), p.1-29, Article 11</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a517-4ef232f133e6a547ba8224034d94f5f473402cfd8dad76afbc93d96ae627d74c3</cites><orcidid>0000-0001-7170-111X ; 0000-0003-4366-9276 ; 0009-0003-1896-0309 ; 0000-0001-7397-5632 ; 0000-0002-3070-9358 ; 0000-0002-9777-9676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3695867$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Ye, Xiaopeng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Shen, Weiran</creatorcontrib><creatorcontrib>Wen, Ji-Rong</creatorcontrib><title>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.</description><subject>Information retrieval</subject><subject>Information systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOI7i3lV3rqJ5J3Ung1WhxUEKLsudPKRqmyHx-e_tMKOrc889H2dxEDql5IJSIS-5KqVReg_NqJQGM6PM_nQTobChxhyio5xfCJm8IjP0VLdL3DTVVdHGL0iuqOP4jFufhmKZ4mfvfCoa-MZNPxYV9Gn0ORcf4-b96G0cBj86eO_jlHrvVmBfp4a4zsfoIMBb9ic7naO2umkXd7h-uL1fXNcYJNVY-MA4C5Rzr0AKvQLDmCBcuFIEGYTmgjAbnHHgtIKwsiV3pQKvmHZaWD5H59tam2LOyYdunfoB0k9HSbeZo9vNMZFnWxLs8A_9hb9uQVlR</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Xu, Chen</creator><creator>Ye, Xiaopeng</creator><creator>Xu, Jun</creator><creator>Zhang, Xiao</creator><creator>Shen, Weiran</creator><creator>Wen, Ji-Rong</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7170-111X</orcidid><orcidid>https://orcid.org/0000-0003-4366-9276</orcidid><orcidid>https://orcid.org/0009-0003-1896-0309</orcidid><orcidid>https://orcid.org/0000-0001-7397-5632</orcidid><orcidid>https://orcid.org/0000-0002-3070-9358</orcidid><orcidid>https://orcid.org/0000-0002-9777-9676</orcidid></search><sort><creationdate>20250131</creationdate><title>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</title><author>Xu, Chen ; Ye, Xiaopeng ; Xu, Jun ; Zhang, Xiao ; Shen, Weiran ; Wen, Ji-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517-4ef232f133e6a547ba8224034d94f5f473402cfd8dad76afbc93d96ae627d74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Information retrieval</topic><topic>Information systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chen</creatorcontrib><creatorcontrib>Ye, Xiaopeng</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Shen, Weiran</creatorcontrib><creatorcontrib>Wen, Ji-Rong</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chen</au><au>Ye, Xiaopeng</au><au>Xu, Jun</au><au>Zhang, Xiao</au><au>Shen, Weiran</au><au>Wen, Ji-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2025-01-31</date><risdate>2025</risdate><volume>43</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><artnum>11</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive feedback on exposed items from users and update recommender models incrementally based on this feedback. When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way, the tail provider will not get the opportunity to be exposed, and its items will always be considered negative samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the long term.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3695867</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7170-111X</orcidid><orcidid>https://orcid.org/0000-0003-4366-9276</orcidid><orcidid>https://orcid.org/0009-0003-1896-0309</orcidid><orcidid>https://orcid.org/0000-0001-7397-5632</orcidid><orcidid>https://orcid.org/0000-0002-3070-9358</orcidid><orcidid>https://orcid.org/0000-0002-9777-9676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1046-8188
ispartof ACM transactions on information systems, 2025-01, Vol.43 (1), p.1-29, Article 11
issn 1046-8188
1558-2868
language eng
recordid cdi_crossref_primary_10_1145_3695867
source ACM Digital Library Complete
subjects Information retrieval
Information systems
title LTP-MMF: Toward Long-Term Provider Max-Min Fairness under Recommendation Feedback Loops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LTP-MMF:%20Toward%20Long-Term%20Provider%20Max-Min%20Fairness%20under%20Recommendation%20Feedback%20Loops&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Xu,%20Chen&rft.date=2025-01-31&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.artnum=11&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3695867&rft_dat=%3Cacm_cross%3E3695867%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true