Computer pattern recognition techniques: electrocardiographic diagnosis
The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people f...
Gespeichert in:
Veröffentlicht in: | Communications of the ACM 1962-10, Vol.5 (10), p.527-531 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 10 |
container_start_page | 527 |
container_title | Communications of the ACM |
container_volume | 5 |
creator | Stark, Lawrence Okajima, Mitsuharu Whipple, Gerald H. |
description | The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals.
The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method. |
doi_str_mv | 10.1145/368959.368994 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_368959_368994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_368959_368994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</originalsourceid><addsrcrecordid>eNot0D1PwzAUhWELgUQpjOz5Ay7XcRzXbCiCFqkSS_fo-is1auNguwP_nlZhenWWMzyEPDNYMdaIF96ulVCra1RzQxZMCEklZ_KWLACAUZDr-p485Px9mSBasSCbLp6mc3GpmrBcMlbJmTiMoYQ4VsWZwxh-zi6_Vu7oTEnRYLIhDgmnQzCVDTiMMYf8SO48HrN7-u-S7D_e992W7r42n93bjppaNoVK7x1XYDSXFhU0qLnxGn2NEtHW2teWAViUSlnWgGBaeM1ACsDWCcGXhM63JsWck_P9lMIJ02_PoL8i9DNCPyPwP8vAUWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype></control><display><type>magazinearticle</type><title>Computer pattern recognition techniques: electrocardiographic diagnosis</title><source>Alma/SFX Local Collection</source><creator>Stark, Lawrence ; Okajima, Mitsuharu ; Whipple, Gerald H.</creator><creatorcontrib>Stark, Lawrence ; Okajima, Mitsuharu ; Whipple, Gerald H.</creatorcontrib><description>The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals.
The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.</description><identifier>ISSN: 0001-0782</identifier><identifier>EISSN: 1557-7317</identifier><identifier>DOI: 10.1145/368959.368994</identifier><language>eng</language><ispartof>Communications of the ACM, 1962-10, Vol.5 (10), p.527-531</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</citedby><cites>FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Stark, Lawrence</creatorcontrib><creatorcontrib>Okajima, Mitsuharu</creatorcontrib><creatorcontrib>Whipple, Gerald H.</creatorcontrib><title>Computer pattern recognition techniques: electrocardiographic diagnosis</title><title>Communications of the ACM</title><description>The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals.
The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.</description><issn>0001-0782</issn><issn>1557-7317</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1962</creationdate><recordtype>magazinearticle</recordtype><recordid>eNot0D1PwzAUhWELgUQpjOz5Ay7XcRzXbCiCFqkSS_fo-is1auNguwP_nlZhenWWMzyEPDNYMdaIF96ulVCra1RzQxZMCEklZ_KWLACAUZDr-p485Px9mSBasSCbLp6mc3GpmrBcMlbJmTiMoYQ4VsWZwxh-zi6_Vu7oTEnRYLIhDgmnQzCVDTiMMYf8SO48HrN7-u-S7D_e992W7r42n93bjppaNoVK7x1XYDSXFhU0qLnxGn2NEtHW2teWAViUSlnWgGBaeM1ACsDWCcGXhM63JsWck_P9lMIJ02_PoL8i9DNCPyPwP8vAUWE</recordid><startdate>19621001</startdate><enddate>19621001</enddate><creator>Stark, Lawrence</creator><creator>Okajima, Mitsuharu</creator><creator>Whipple, Gerald H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19621001</creationdate><title>Computer pattern recognition techniques: electrocardiographic diagnosis</title><author>Stark, Lawrence ; Okajima, Mitsuharu ; Whipple, Gerald H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1962</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Stark, Lawrence</creatorcontrib><creatorcontrib>Okajima, Mitsuharu</creatorcontrib><creatorcontrib>Whipple, Gerald H.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stark, Lawrence</au><au>Okajima, Mitsuharu</au><au>Whipple, Gerald H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer pattern recognition techniques: electrocardiographic diagnosis</atitle><jtitle>Communications of the ACM</jtitle><date>1962-10-01</date><risdate>1962</risdate><volume>5</volume><issue>10</issue><spage>527</spage><epage>531</epage><pages>527-531</pages><issn>0001-0782</issn><eissn>1557-7317</eissn><abstract>The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals.
The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.</abstract><doi>10.1145/368959.368994</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-0782 |
ispartof | Communications of the ACM, 1962-10, Vol.5 (10), p.527-531 |
issn | 0001-0782 1557-7317 |
language | eng |
recordid | cdi_crossref_primary_10_1145_368959_368994 |
source | Alma/SFX Local Collection |
title | Computer pattern recognition techniques: electrocardiographic diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20pattern%20recognition%20techniques:%20electrocardiographic%20diagnosis&rft.jtitle=Communications%20of%20the%20ACM&rft.au=Stark,%20Lawrence&rft.date=1962-10-01&rft.volume=5&rft.issue=10&rft.spage=527&rft.epage=531&rft.pages=527-531&rft.issn=0001-0782&rft.eissn=1557-7317&rft_id=info:doi/10.1145/368959.368994&rft_dat=%3Ccrossref%3E10_1145_368959_368994%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |