Computer pattern recognition techniques: electrocardiographic diagnosis

The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the ACM 1962-10, Vol.5 (10), p.527-531
Hauptverfasser: Stark, Lawrence, Okajima, Mitsuharu, Whipple, Gerald H.
Format: Magazinearticle
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue 10
container_start_page 527
container_title Communications of the ACM
container_volume 5
creator Stark, Lawrence
Okajima, Mitsuharu
Whipple, Gerald H.
description The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals. The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.
doi_str_mv 10.1145/368959.368994
format Magazinearticle
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_368959_368994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_368959_368994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</originalsourceid><addsrcrecordid>eNot0D1PwzAUhWELgUQpjOz5Ay7XcRzXbCiCFqkSS_fo-is1auNguwP_nlZhenWWMzyEPDNYMdaIF96ulVCra1RzQxZMCEklZ_KWLACAUZDr-p485Px9mSBasSCbLp6mc3GpmrBcMlbJmTiMoYQ4VsWZwxh-zi6_Vu7oTEnRYLIhDgmnQzCVDTiMMYf8SO48HrN7-u-S7D_e992W7r42n93bjppaNoVK7x1XYDSXFhU0qLnxGn2NEtHW2teWAViUSlnWgGBaeM1ACsDWCcGXhM63JsWck_P9lMIJ02_PoL8i9DNCPyPwP8vAUWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype></control><display><type>magazinearticle</type><title>Computer pattern recognition techniques: electrocardiographic diagnosis</title><source>Alma/SFX Local Collection</source><creator>Stark, Lawrence ; Okajima, Mitsuharu ; Whipple, Gerald H.</creator><creatorcontrib>Stark, Lawrence ; Okajima, Mitsuharu ; Whipple, Gerald H.</creatorcontrib><description>The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals. The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.</description><identifier>ISSN: 0001-0782</identifier><identifier>EISSN: 1557-7317</identifier><identifier>DOI: 10.1145/368959.368994</identifier><language>eng</language><ispartof>Communications of the ACM, 1962-10, Vol.5 (10), p.527-531</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</citedby><cites>FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Stark, Lawrence</creatorcontrib><creatorcontrib>Okajima, Mitsuharu</creatorcontrib><creatorcontrib>Whipple, Gerald H.</creatorcontrib><title>Computer pattern recognition techniques: electrocardiographic diagnosis</title><title>Communications of the ACM</title><description>The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals. The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.</description><issn>0001-0782</issn><issn>1557-7317</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1962</creationdate><recordtype>magazinearticle</recordtype><recordid>eNot0D1PwzAUhWELgUQpjOz5Ay7XcRzXbCiCFqkSS_fo-is1auNguwP_nlZhenWWMzyEPDNYMdaIF96ulVCra1RzQxZMCEklZ_KWLACAUZDr-p485Px9mSBasSCbLp6mc3GpmrBcMlbJmTiMoYQ4VsWZwxh-zi6_Vu7oTEnRYLIhDgmnQzCVDTiMMYf8SO48HrN7-u-S7D_e992W7r42n93bjppaNoVK7x1XYDSXFhU0qLnxGn2NEtHW2teWAViUSlnWgGBaeM1ACsDWCcGXhM63JsWck_P9lMIJ02_PoL8i9DNCPyPwP8vAUWE</recordid><startdate>19621001</startdate><enddate>19621001</enddate><creator>Stark, Lawrence</creator><creator>Okajima, Mitsuharu</creator><creator>Whipple, Gerald H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19621001</creationdate><title>Computer pattern recognition techniques: electrocardiographic diagnosis</title><author>Stark, Lawrence ; Okajima, Mitsuharu ; Whipple, Gerald H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-7ffe390cb37da904ab3cfbaf2a7aad2bf2d100da799d14051b5fb10750a6e553</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1962</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Stark, Lawrence</creatorcontrib><creatorcontrib>Okajima, Mitsuharu</creatorcontrib><creatorcontrib>Whipple, Gerald H.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stark, Lawrence</au><au>Okajima, Mitsuharu</au><au>Whipple, Gerald H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer pattern recognition techniques: electrocardiographic diagnosis</atitle><jtitle>Communications of the ACM</jtitle><date>1962-10-01</date><risdate>1962</risdate><volume>5</volume><issue>10</issue><spage>527</spage><epage>531</epage><pages>527-531</pages><issn>0001-0782</issn><eissn>1557-7317</eissn><abstract>The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals. The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.</abstract><doi>10.1145/368959.368994</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-0782
ispartof Communications of the ACM, 1962-10, Vol.5 (10), p.527-531
issn 0001-0782
1557-7317
language eng
recordid cdi_crossref_primary_10_1145_368959_368994
source Alma/SFX Local Collection
title Computer pattern recognition techniques: electrocardiographic diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20pattern%20recognition%20techniques:%20electrocardiographic%20diagnosis&rft.jtitle=Communications%20of%20the%20ACM&rft.au=Stark,%20Lawrence&rft.date=1962-10-01&rft.volume=5&rft.issue=10&rft.spage=527&rft.epage=531&rft.pages=527-531&rft.issn=0001-0782&rft.eissn=1557-7317&rft_id=info:doi/10.1145/368959.368994&rft_dat=%3Ccrossref%3E10_1145_368959_368994%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true