CoNST: Code Generator for Sparse Tensor Networks

Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on architecture and code optimization 2024-12, Vol.21 (4), p.1-24, Article 82
Hauptverfasser: Raje, Saurabh, Xu, Yufan, Rountev, Atanas, Valeev, Edward F., Sadayappan, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 4
container_start_page 1
container_title ACM transactions on architecture and code optimization
container_volume 21
creator Raje, Saurabh
Xu, Yufan
Rountev, Atanas
Valeev, Edward F.
Sadayappan, P.
description Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives.
doi_str_mv 10.1145/3689342
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3689342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3689342</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512-fa3c33d7cbe03ad26d02bb059d4bee9eb153545ef0ea8ff1d313228e2ff7744f3</originalsourceid><addsrcrecordid>eNo9j01LAzEQhoMoWFvx7mlvnlYnmWR3400WrUJpD937kmxmwI82JSmI_96Vth6GmZf3YeAR4kbCvZTaPGDVWNTqTEyk0bpEW-P56TZVdSmucv4AUFYBTAS0cbnuHos2BirmtKXk9jEVPM5651KmoqNtHtOS9t8xfeaZuGD3len6uKeie3nu2tdysZq_tU-L0hmpSnY4IIZ68ATogqoCKO_B2KA9kSUvDRptiIFcwywDSlSqIcVc11ozTsXd4e2QYs6JuN-l941LP72E_s-zP3qO5O2BdMPmHzqVvzNwS_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CoNST: Code Generator for Sparse Tensor Networks</title><source>ACM Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Raje, Saurabh ; Xu, Yufan ; Rountev, Atanas ; Valeev, Edward F. ; Sadayappan, P.</creator><creatorcontrib>Raje, Saurabh ; Xu, Yufan ; Rountev, Atanas ; Valeev, Edward F. ; Sadayappan, P.</creatorcontrib><description>Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives.</description><identifier>ISSN: 1544-3566</identifier><identifier>EISSN: 1544-3973</identifier><identifier>DOI: 10.1145/3689342</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Domain specific languages ; Software and its engineering ; Source code generation</subject><ispartof>ACM transactions on architecture and code optimization, 2024-12, Vol.21 (4), p.1-24, Article 82</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a512-fa3c33d7cbe03ad26d02bb059d4bee9eb153545ef0ea8ff1d313228e2ff7744f3</cites><orcidid>0000-0003-3294-1481 ; 0000-0002-7787-6460 ; 0000-0003-4556-4937 ; 0000-0002-4737-2034 ; 0000-0001-9923-6256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3689342$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27922,27923,40194,75998</link.rule.ids></links><search><creatorcontrib>Raje, Saurabh</creatorcontrib><creatorcontrib>Xu, Yufan</creatorcontrib><creatorcontrib>Rountev, Atanas</creatorcontrib><creatorcontrib>Valeev, Edward F.</creatorcontrib><creatorcontrib>Sadayappan, P.</creatorcontrib><title>CoNST: Code Generator for Sparse Tensor Networks</title><title>ACM transactions on architecture and code optimization</title><addtitle>ACM TACO</addtitle><description>Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives.</description><subject>Domain specific languages</subject><subject>Software and its engineering</subject><subject>Source code generation</subject><issn>1544-3566</issn><issn>1544-3973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhoMoWFvx7mlvnlYnmWR3400WrUJpD937kmxmwI82JSmI_96Vth6GmZf3YeAR4kbCvZTaPGDVWNTqTEyk0bpEW-P56TZVdSmucv4AUFYBTAS0cbnuHos2BirmtKXk9jEVPM5651KmoqNtHtOS9t8xfeaZuGD3len6uKeie3nu2tdysZq_tU-L0hmpSnY4IIZ68ATogqoCKO_B2KA9kSUvDRptiIFcwywDSlSqIcVc11ozTsXd4e2QYs6JuN-l941LP72E_s-zP3qO5O2BdMPmHzqVvzNwS_o</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Raje, Saurabh</creator><creator>Xu, Yufan</creator><creator>Rountev, Atanas</creator><creator>Valeev, Edward F.</creator><creator>Sadayappan, P.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3294-1481</orcidid><orcidid>https://orcid.org/0000-0002-7787-6460</orcidid><orcidid>https://orcid.org/0000-0003-4556-4937</orcidid><orcidid>https://orcid.org/0000-0002-4737-2034</orcidid><orcidid>https://orcid.org/0000-0001-9923-6256</orcidid></search><sort><creationdate>20241231</creationdate><title>CoNST: Code Generator for Sparse Tensor Networks</title><author>Raje, Saurabh ; Xu, Yufan ; Rountev, Atanas ; Valeev, Edward F. ; Sadayappan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512-fa3c33d7cbe03ad26d02bb059d4bee9eb153545ef0ea8ff1d313228e2ff7744f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Domain specific languages</topic><topic>Software and its engineering</topic><topic>Source code generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raje, Saurabh</creatorcontrib><creatorcontrib>Xu, Yufan</creatorcontrib><creatorcontrib>Rountev, Atanas</creatorcontrib><creatorcontrib>Valeev, Edward F.</creatorcontrib><creatorcontrib>Sadayappan, P.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on architecture and code optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raje, Saurabh</au><au>Xu, Yufan</au><au>Rountev, Atanas</au><au>Valeev, Edward F.</au><au>Sadayappan, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CoNST: Code Generator for Sparse Tensor Networks</atitle><jtitle>ACM transactions on architecture and code optimization</jtitle><stitle>ACM TACO</stitle><date>2024-12-31</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><artnum>82</artnum><issn>1544-3566</issn><eissn>1544-3973</eissn><abstract>Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3689342</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3294-1481</orcidid><orcidid>https://orcid.org/0000-0002-7787-6460</orcidid><orcidid>https://orcid.org/0000-0003-4556-4937</orcidid><orcidid>https://orcid.org/0000-0002-4737-2034</orcidid><orcidid>https://orcid.org/0000-0001-9923-6256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1544-3566
ispartof ACM transactions on architecture and code optimization, 2024-12, Vol.21 (4), p.1-24, Article 82
issn 1544-3566
1544-3973
language eng
recordid cdi_crossref_primary_10_1145_3689342
source ACM Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Domain specific languages
Software and its engineering
Source code generation
title CoNST: Code Generator for Sparse Tensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CoNST:%20Code%20Generator%20for%20Sparse%20Tensor%20Networks&rft.jtitle=ACM%20transactions%20on%20architecture%20and%20code%20optimization&rft.au=Raje,%20Saurabh&rft.date=2024-12-31&rft.volume=21&rft.issue=4&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.artnum=82&rft.issn=1544-3566&rft.eissn=1544-3973&rft_id=info:doi/10.1145/3689342&rft_dat=%3Cacm_cross%3E3689342%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true