GroomCap: High-Fidelity Prior-Free Hair Capture
Despite recent advances in multi-view hair reconstruction, achieving strand-level precision remains a significant challenge due to inherent limitations in existing capture pipelines. We introduce GroomCap, a novel multi-view hair capture method that reconstructs faithful and high-fidelity hair geome...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2024-12, Vol.43 (6), p.1-15, Article 254 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite recent advances in multi-view hair reconstruction, achieving strand-level precision remains a significant challenge due to inherent limitations in existing capture pipelines. We introduce GroomCap, a novel multi-view hair capture method that reconstructs faithful and high-fidelity hair geometry without relying on external data priors. To address the limitations of conventional reconstruction algorithms, we propose a neural implicit representation for hair volume that encodes high-resolution 3D orientation and occupancy from input views. This implicit hair volume is trained with a new volumetric 3D orientation rendering algorithm, coupled with 2D orientation distribution supervision, to effectively prevent the loss of structural information caused by undesired orientation blending. We further propose a Gaussian-based hair optimization strategy to refine the traced hair strands with a novel chained Gaussian representation, utilizing direct photometric supervision from images. Our results demonstrate that GroomCap is able to capture high-quality hair geometries that are not only more precise and detailed than existing methods but also versatile enough for a range of applications. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3687768 |