Software Optimization and Design Methodology for Low Power Computer Vision Systems

This tutorial article addresses a low power computer vision system as an example of a growing application domain of neural networks, exploring various technologies developed to enhance accuracy within the resource and performance constraints imposed by the hardware platform. Focused on a given hardw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2025-01, Vol.24 (1), p.1-31, Article 19
Hauptverfasser: Ha, Soonhoi, Jeong, Eunjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 1
container_title ACM transactions on embedded computing systems
container_volume 24
creator Ha, Soonhoi
Jeong, Eunjin
description This tutorial article addresses a low power computer vision system as an example of a growing application domain of neural networks, exploring various technologies developed to enhance accuracy within the resource and performance constraints imposed by the hardware platform. Focused on a given hardware platform and network model, software optimization techniques, including pruning, quantization, low-rank approximation, and parallelization, aim to satisfy resource and performance constraints while minimizing accuracy loss. Due to the interdependence of model compression approaches, their systematic application is crucial, as evidenced by winning solutions in the Lower Power Image Recognition Challenge (LPIRC) of 2017 and 2018. Recognizing the typical heterogeneity of processing elements in contemporary hardware platforms, the effective utilization through parallelizing neural networks emerges as increasingly vital for performance enhancement. The article advocates for a more impactful strategy—designing a network architecture tailored to a specific hardware platform. For detailed information on each technique, the article provides corresponding references.
doi_str_mv 10.1145/3687310
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3687310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a136t-b8d3be4706a45564ae534e98702a6bf4596a8de0dfa693800e99a99f0666aa073</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqUgdiZvTIHX9UfsEZVPqaiIAmv0prFLUBNXtlEUfj2NWpjupHvuhiPknMEVY0Jec6VzzuCAjJiUOuNCycPBc5MZ0PkxOYnxC4DlEyFH5HXhXeowWDrfpLqpfzDVvqXYVvTWxnrV0mebPn3l137VU-cDnfmOvvjOBjr1zeY7bc1HHYfSoo_JNvGUHDlcR3u21zF5v797mz5ms_nD0_RmliHjKmWlrnhpRQ4KhZRKoJVcWKNzmKAqnZBGoa4sVA6V4RrAGoPGOFBKIULOx-Ryt7sMPsZgXbEJdYOhLxgUwxXF_ootebEjcdn8Q3_hL0kJWQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Software Optimization and Design Methodology for Low Power Computer Vision Systems</title><source>ACM Digital Library Complete</source><creator>Ha, Soonhoi ; Jeong, Eunjin</creator><creatorcontrib>Ha, Soonhoi ; Jeong, Eunjin</creatorcontrib><description>This tutorial article addresses a low power computer vision system as an example of a growing application domain of neural networks, exploring various technologies developed to enhance accuracy within the resource and performance constraints imposed by the hardware platform. Focused on a given hardware platform and network model, software optimization techniques, including pruning, quantization, low-rank approximation, and parallelization, aim to satisfy resource and performance constraints while minimizing accuracy loss. Due to the interdependence of model compression approaches, their systematic application is crucial, as evidenced by winning solutions in the Lower Power Image Recognition Challenge (LPIRC) of 2017 and 2018. Recognizing the typical heterogeneity of processing elements in contemporary hardware platforms, the effective utilization through parallelizing neural networks emerges as increasingly vital for performance enhancement. The article advocates for a more impactful strategy—designing a network architecture tailored to a specific hardware platform. For detailed information on each technique, the article provides corresponding references.</description><identifier>ISSN: 1539-9087</identifier><identifier>EISSN: 1558-3465</identifier><identifier>DOI: 10.1145/3687310</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Approximation ; Computer systems organization ; Computing methodologies ; Embedded software ; Embedded systems ; Mathematics of computing ; Object detection ; Search methodologies ; Software and its engineering</subject><ispartof>ACM transactions on embedded computing systems, 2025-01, Vol.24 (1), p.1-31, Article 19</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a136t-b8d3be4706a45564ae534e98702a6bf4596a8de0dfa693800e99a99f0666aa073</cites><orcidid>0000-0001-7472-9142 ; 0000-0002-9585-3369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3687310$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Ha, Soonhoi</creatorcontrib><creatorcontrib>Jeong, Eunjin</creatorcontrib><title>Software Optimization and Design Methodology for Low Power Computer Vision Systems</title><title>ACM transactions on embedded computing systems</title><addtitle>ACM TECS</addtitle><description>This tutorial article addresses a low power computer vision system as an example of a growing application domain of neural networks, exploring various technologies developed to enhance accuracy within the resource and performance constraints imposed by the hardware platform. Focused on a given hardware platform and network model, software optimization techniques, including pruning, quantization, low-rank approximation, and parallelization, aim to satisfy resource and performance constraints while minimizing accuracy loss. Due to the interdependence of model compression approaches, their systematic application is crucial, as evidenced by winning solutions in the Lower Power Image Recognition Challenge (LPIRC) of 2017 and 2018. Recognizing the typical heterogeneity of processing elements in contemporary hardware platforms, the effective utilization through parallelizing neural networks emerges as increasingly vital for performance enhancement. The article advocates for a more impactful strategy—designing a network architecture tailored to a specific hardware platform. For detailed information on each technique, the article provides corresponding references.</description><subject>Approximation</subject><subject>Computer systems organization</subject><subject>Computing methodologies</subject><subject>Embedded software</subject><subject>Embedded systems</subject><subject>Mathematics of computing</subject><subject>Object detection</subject><subject>Search methodologies</subject><subject>Software and its engineering</subject><issn>1539-9087</issn><issn>1558-3465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqUgdiZvTIHX9UfsEZVPqaiIAmv0prFLUBNXtlEUfj2NWpjupHvuhiPknMEVY0Jec6VzzuCAjJiUOuNCycPBc5MZ0PkxOYnxC4DlEyFH5HXhXeowWDrfpLqpfzDVvqXYVvTWxnrV0mebPn3l137VU-cDnfmOvvjOBjr1zeY7bc1HHYfSoo_JNvGUHDlcR3u21zF5v797mz5ms_nD0_RmliHjKmWlrnhpRQ4KhZRKoJVcWKNzmKAqnZBGoa4sVA6V4RrAGoPGOFBKIULOx-Ryt7sMPsZgXbEJdYOhLxgUwxXF_ootebEjcdn8Q3_hL0kJWQE</recordid><startdate>20250131</startdate><enddate>20250131</enddate><creator>Ha, Soonhoi</creator><creator>Jeong, Eunjin</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7472-9142</orcidid><orcidid>https://orcid.org/0000-0002-9585-3369</orcidid></search><sort><creationdate>20250131</creationdate><title>Software Optimization and Design Methodology for Low Power Computer Vision Systems</title><author>Ha, Soonhoi ; Jeong, Eunjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a136t-b8d3be4706a45564ae534e98702a6bf4596a8de0dfa693800e99a99f0666aa073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation</topic><topic>Computer systems organization</topic><topic>Computing methodologies</topic><topic>Embedded software</topic><topic>Embedded systems</topic><topic>Mathematics of computing</topic><topic>Object detection</topic><topic>Search methodologies</topic><topic>Software and its engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Soonhoi</creatorcontrib><creatorcontrib>Jeong, Eunjin</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on embedded computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Soonhoi</au><au>Jeong, Eunjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Software Optimization and Design Methodology for Low Power Computer Vision Systems</atitle><jtitle>ACM transactions on embedded computing systems</jtitle><stitle>ACM TECS</stitle><date>2025-01-31</date><risdate>2025</risdate><volume>24</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><artnum>19</artnum><issn>1539-9087</issn><eissn>1558-3465</eissn><abstract>This tutorial article addresses a low power computer vision system as an example of a growing application domain of neural networks, exploring various technologies developed to enhance accuracy within the resource and performance constraints imposed by the hardware platform. Focused on a given hardware platform and network model, software optimization techniques, including pruning, quantization, low-rank approximation, and parallelization, aim to satisfy resource and performance constraints while minimizing accuracy loss. Due to the interdependence of model compression approaches, their systematic application is crucial, as evidenced by winning solutions in the Lower Power Image Recognition Challenge (LPIRC) of 2017 and 2018. Recognizing the typical heterogeneity of processing elements in contemporary hardware platforms, the effective utilization through parallelizing neural networks emerges as increasingly vital for performance enhancement. The article advocates for a more impactful strategy—designing a network architecture tailored to a specific hardware platform. For detailed information on each technique, the article provides corresponding references.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3687310</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-7472-9142</orcidid><orcidid>https://orcid.org/0000-0002-9585-3369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-9087
ispartof ACM transactions on embedded computing systems, 2025-01, Vol.24 (1), p.1-31, Article 19
issn 1539-9087
1558-3465
language eng
recordid cdi_crossref_primary_10_1145_3687310
source ACM Digital Library Complete
subjects Approximation
Computer systems organization
Computing methodologies
Embedded software
Embedded systems
Mathematics of computing
Object detection
Search methodologies
Software and its engineering
title Software Optimization and Design Methodology for Low Power Computer Vision Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Software%20Optimization%20and%20Design%20Methodology%20for%20Low%20Power%20Computer%20Vision%20Systems&rft.jtitle=ACM%20transactions%20on%20embedded%20computing%20systems&rft.au=Ha,%20Soonhoi&rft.date=2025-01-31&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.artnum=19&rft.issn=1539-9087&rft.eissn=1558-3465&rft_id=info:doi/10.1145/3687310&rft_dat=%3Cacm_cross%3E3687310%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true