Presentation Attack Detection: A Systematic Literature Review
Identity authentication is the process of verifying one’s identity. Many identity authentication methods have been developed, from the conventional username-password systems to the recent electroencephalography-based authentication. Among them, biometric authentication shows particular importance du...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2025-01, Vol.57 (1), p.1-32, Article 25 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 57 |
creator | Pooshideh, Matineh Beheshti, Amin Qi, Yuankai Farhood, Helia Simpson, Mike Gatland, Nick Soltany, Mehdi |
description | Identity authentication is the process of verifying one’s identity. Many identity authentication methods have been developed, from the conventional username-password systems to the recent electroencephalography-based authentication. Among them, biometric authentication shows particular importance due to its convenience and wide application in real-world scenarios. Face recognition is one of the most widely used biometric authentication methods, but simultaneously it receives various attacks. To overcome attacks, face presentation attack detection has been intensively studied in the last two decades regarding diverse domains of datasets, evaluation methods, and attack types. In this systematic literature review, we identify and categorise the state-of-the-art approaches in each domain to cover the challenges and solutions in a single place. We provide comparisons of representative methods on widely used datasets, discuss their pros and cons, and hope our insights can inspire future works. |
doi_str_mv | 10.1145/3687264 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3687264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156170093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a197t-d41f1bb04844fa7a72cab9c8a8eb646cc33ff8b854503c23a7de8bc76cb51feb3</originalsourceid><addsrcrecordid>eNo90MtLAzEQBvAgCtYq3j0tePC0OrN5VvBQ6hMKio_zkqQT2Gq7NUkt_e_d0uppYL4fM_AxdopwiSjkFVdGV0rssR5KqUvNBe6zHnAFJXCAQ3aU0hQAKoGqx25eIiWaZ5ubdl4Mc7b-s7ilTH6zuC6Gxds6ZZp1uS_GTaZo8zJS8Uo_Da2O2UGwX4lOdrPPPu7v3keP5fj54Wk0HJcWBzqXE4EBnQNhhAhWW1156wbeWENOCeU95yEYZ6SQwH3FrZ6QcV4r7yQGcrzPzrd3F7H9XlLK9bRdxnn3suYoFWqAAe_UxVb52KYUKdSL2MxsXNcI9aabetdNJ8-20vrZP_oLfwFUv13p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156170093</pqid></control><display><type>article</type><title>Presentation Attack Detection: A Systematic Literature Review</title><source>ACM Digital Library Complete</source><creator>Pooshideh, Matineh ; Beheshti, Amin ; Qi, Yuankai ; Farhood, Helia ; Simpson, Mike ; Gatland, Nick ; Soltany, Mehdi</creator><creatorcontrib>Pooshideh, Matineh ; Beheshti, Amin ; Qi, Yuankai ; Farhood, Helia ; Simpson, Mike ; Gatland, Nick ; Soltany, Mehdi</creatorcontrib><description>Identity authentication is the process of verifying one’s identity. Many identity authentication methods have been developed, from the conventional username-password systems to the recent electroencephalography-based authentication. Among them, biometric authentication shows particular importance due to its convenience and wide application in real-world scenarios. Face recognition is one of the most widely used biometric authentication methods, but simultaneously it receives various attacks. To overcome attacks, face presentation attack detection has been intensively studied in the last two decades regarding diverse domains of datasets, evaluation methods, and attack types. In this systematic literature review, we identify and categorise the state-of-the-art approaches in each domain to cover the challenges and solutions in a single place. We provide comparisons of representative methods on widely used datasets, discuss their pros and cons, and hope our insights can inspire future works.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3687264</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Authentication ; Biometrics ; Computing methodologies ; Datasets ; Face recognition ; Literature reviews ; State-of-the-art reviews</subject><ispartof>ACM computing surveys, 2025-01, Vol.57 (1), p.1-32, Article 25</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Jan 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a197t-d41f1bb04844fa7a72cab9c8a8eb646cc33ff8b854503c23a7de8bc76cb51feb3</cites><orcidid>0000-0003-4312-5682 ; 0000-0002-5988-5494 ; 0009-0003-7398-7686 ; 0009-0006-3371-2735 ; 0000-0001-8213-2338 ; 0000-0003-3413-6873 ; 0009-0008-7132-3671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3687264$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Pooshideh, Matineh</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><creatorcontrib>Qi, Yuankai</creatorcontrib><creatorcontrib>Farhood, Helia</creatorcontrib><creatorcontrib>Simpson, Mike</creatorcontrib><creatorcontrib>Gatland, Nick</creatorcontrib><creatorcontrib>Soltany, Mehdi</creatorcontrib><title>Presentation Attack Detection: A Systematic Literature Review</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Identity authentication is the process of verifying one’s identity. Many identity authentication methods have been developed, from the conventional username-password systems to the recent electroencephalography-based authentication. Among them, biometric authentication shows particular importance due to its convenience and wide application in real-world scenarios. Face recognition is one of the most widely used biometric authentication methods, but simultaneously it receives various attacks. To overcome attacks, face presentation attack detection has been intensively studied in the last two decades regarding diverse domains of datasets, evaluation methods, and attack types. In this systematic literature review, we identify and categorise the state-of-the-art approaches in each domain to cover the challenges and solutions in a single place. We provide comparisons of representative methods on widely used datasets, discuss their pros and cons, and hope our insights can inspire future works.</description><subject>Authentication</subject><subject>Biometrics</subject><subject>Computing methodologies</subject><subject>Datasets</subject><subject>Face recognition</subject><subject>Literature reviews</subject><subject>State-of-the-art reviews</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo90MtLAzEQBvAgCtYq3j0tePC0OrN5VvBQ6hMKio_zkqQT2Gq7NUkt_e_d0uppYL4fM_AxdopwiSjkFVdGV0rssR5KqUvNBe6zHnAFJXCAQ3aU0hQAKoGqx25eIiWaZ5ubdl4Mc7b-s7ilTH6zuC6Gxds6ZZp1uS_GTaZo8zJS8Uo_Da2O2UGwX4lOdrPPPu7v3keP5fj54Wk0HJcWBzqXE4EBnQNhhAhWW1156wbeWENOCeU95yEYZ6SQwH3FrZ6QcV4r7yQGcrzPzrd3F7H9XlLK9bRdxnn3suYoFWqAAe_UxVb52KYUKdSL2MxsXNcI9aabetdNJ8-20vrZP_oLfwFUv13p</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Pooshideh, Matineh</creator><creator>Beheshti, Amin</creator><creator>Qi, Yuankai</creator><creator>Farhood, Helia</creator><creator>Simpson, Mike</creator><creator>Gatland, Nick</creator><creator>Soltany, Mehdi</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4312-5682</orcidid><orcidid>https://orcid.org/0000-0002-5988-5494</orcidid><orcidid>https://orcid.org/0009-0003-7398-7686</orcidid><orcidid>https://orcid.org/0009-0006-3371-2735</orcidid><orcidid>https://orcid.org/0000-0001-8213-2338</orcidid><orcidid>https://orcid.org/0000-0003-3413-6873</orcidid><orcidid>https://orcid.org/0009-0008-7132-3671</orcidid></search><sort><creationdate>20250101</creationdate><title>Presentation Attack Detection: A Systematic Literature Review</title><author>Pooshideh, Matineh ; Beheshti, Amin ; Qi, Yuankai ; Farhood, Helia ; Simpson, Mike ; Gatland, Nick ; Soltany, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a197t-d41f1bb04844fa7a72cab9c8a8eb646cc33ff8b854503c23a7de8bc76cb51feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Authentication</topic><topic>Biometrics</topic><topic>Computing methodologies</topic><topic>Datasets</topic><topic>Face recognition</topic><topic>Literature reviews</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pooshideh, Matineh</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><creatorcontrib>Qi, Yuankai</creatorcontrib><creatorcontrib>Farhood, Helia</creatorcontrib><creatorcontrib>Simpson, Mike</creatorcontrib><creatorcontrib>Gatland, Nick</creatorcontrib><creatorcontrib>Soltany, Mehdi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pooshideh, Matineh</au><au>Beheshti, Amin</au><au>Qi, Yuankai</au><au>Farhood, Helia</au><au>Simpson, Mike</au><au>Gatland, Nick</au><au>Soltany, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presentation Attack Detection: A Systematic Literature Review</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>32</epage><pages>1-32</pages><artnum>25</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Identity authentication is the process of verifying one’s identity. Many identity authentication methods have been developed, from the conventional username-password systems to the recent electroencephalography-based authentication. Among them, biometric authentication shows particular importance due to its convenience and wide application in real-world scenarios. Face recognition is one of the most widely used biometric authentication methods, but simultaneously it receives various attacks. To overcome attacks, face presentation attack detection has been intensively studied in the last two decades regarding diverse domains of datasets, evaluation methods, and attack types. In this systematic literature review, we identify and categorise the state-of-the-art approaches in each domain to cover the challenges and solutions in a single place. We provide comparisons of representative methods on widely used datasets, discuss their pros and cons, and hope our insights can inspire future works.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3687264</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-4312-5682</orcidid><orcidid>https://orcid.org/0000-0002-5988-5494</orcidid><orcidid>https://orcid.org/0009-0003-7398-7686</orcidid><orcidid>https://orcid.org/0009-0006-3371-2735</orcidid><orcidid>https://orcid.org/0000-0001-8213-2338</orcidid><orcidid>https://orcid.org/0000-0003-3413-6873</orcidid><orcidid>https://orcid.org/0009-0008-7132-3671</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2025-01, Vol.57 (1), p.1-32, Article 25 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3687264 |
source | ACM Digital Library Complete |
subjects | Authentication Biometrics Computing methodologies Datasets Face recognition Literature reviews State-of-the-art reviews |
title | Presentation Attack Detection: A Systematic Literature Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presentation%20Attack%20Detection:%20A%20Systematic%20Literature%20Review&rft.jtitle=ACM%20computing%20surveys&rft.au=Pooshideh,%20Matineh&rft.date=2025-01-01&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.artnum=25&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3687264&rft_dat=%3Cproquest_cross%3E3156170093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156170093&rft_id=info:pmid/&rfr_iscdi=true |