VRVul-Discovery: BiLSTM-based Vulnerability Discovery for Virtual Reality Devices in Metaverse

The rapid development of the metaverse has brought about numerous security challenges. Virtual Reality (VR), as one of the core technologies, plays a crucial role in the metaverse. The security of VR devices directly impacts user authentication and privacy. Currently, no attention has been paid to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on multimedia computing communications and applications 2025-02, Vol.21 (2), p.1-19
Hauptverfasser: Sha, Letian, Chen, Xiao, Xiao, Fu, Wang, Zhong, Long, Zhangbo, Fan, Qianyu, Dong, Jiankuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 2
container_start_page 1
container_title ACM transactions on multimedia computing communications and applications
container_volume 21
creator Sha, Letian
Chen, Xiao
Xiao, Fu
Wang, Zhong
Long, Zhangbo
Fan, Qianyu
Dong, Jiankuo
description The rapid development of the metaverse has brought about numerous security challenges. Virtual Reality (VR), as one of the core technologies, plays a crucial role in the metaverse. The security of VR devices directly impacts user authentication and privacy. Currently, no attention has been paid to the vulnerabilities and security risks of VR devices. This paper employs a bi-layer BiLSTM neural network to conduct a root cause analysis for user authentication and scene interaction when users enter metaverse environment using VR devices. By establishing the mapping between vulnerable VR firmware file attributes and metaverse interaction scenarios, we implement a vulnerability discovery and verification prototype called VRVul-Discovery, based on the concept of vulnerability discovery. Experiment results demonstrate that VRVul-Discovery provides high-accuracy determinations of firmware vulnerability attributes and scenarios susceptible to hijacking. In the end, the prototype system discovers seven unknown vulnerabilities, all of which are authenticated.
doi_str_mv 10.1145/3677609
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3677609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3677609</sourcerecordid><originalsourceid>FETCH-LOGICAL-a519-2502e85bb15efc57a24b4b01cf9ba0e22763ef24f0030c4b6a521472775f32503</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt495Sbp2iSzSStN62fsEWoS48uSZxAZNtKsi3sv3eldU8z8DzvMLyEXAp-I4SC20Ibo_n0iIwEgGB6ouF42MGckrOcvzkvNCg9Ip_LxXLbsMeY_WaHqbujD7H8qObM2YxftGdrTNbFJrYdHSwaNokuY2q3tqELtHuKu-gx07imc2xt72U8JyfBNhkvDnNMquenavbKyveXt9l9ySyIKZPAJU7AOQEYPBgrlVOOCx-mznKU0ugCg1Shf5t75bQFKZSRxkAo-nAxJtf7sz5tck4Y6p8UVzZ1teD1Xyv1oZXevNqb1q8G6R_-AimvXAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VRVul-Discovery: BiLSTM-based Vulnerability Discovery for Virtual Reality Devices in Metaverse</title><source>ACM Digital Library Complete</source><creator>Sha, Letian ; Chen, Xiao ; Xiao, Fu ; Wang, Zhong ; Long, Zhangbo ; Fan, Qianyu ; Dong, Jiankuo</creator><creatorcontrib>Sha, Letian ; Chen, Xiao ; Xiao, Fu ; Wang, Zhong ; Long, Zhangbo ; Fan, Qianyu ; Dong, Jiankuo</creatorcontrib><description>The rapid development of the metaverse has brought about numerous security challenges. Virtual Reality (VR), as one of the core technologies, plays a crucial role in the metaverse. The security of VR devices directly impacts user authentication and privacy. Currently, no attention has been paid to the vulnerabilities and security risks of VR devices. This paper employs a bi-layer BiLSTM neural network to conduct a root cause analysis for user authentication and scene interaction when users enter metaverse environment using VR devices. By establishing the mapping between vulnerable VR firmware file attributes and metaverse interaction scenarios, we implement a vulnerability discovery and verification prototype called VRVul-Discovery, based on the concept of vulnerability discovery. Experiment results demonstrate that VRVul-Discovery provides high-accuracy determinations of firmware vulnerability attributes and scenarios susceptible to hijacking. In the end, the prototype system discovers seven unknown vulnerabilities, all of which are authenticated.</description><identifier>ISSN: 1551-6857</identifier><identifier>EISSN: 1551-6865</identifier><identifier>DOI: 10.1145/3677609</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><ispartof>ACM transactions on multimedia computing communications and applications, 2025-02, Vol.21 (2), p.1-19</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a519-2502e85bb15efc57a24b4b01cf9ba0e22763ef24f0030c4b6a521472775f32503</cites><orcidid>0009-0006-7355-1040 ; 0000-0003-1693-3000 ; 0009-0008-1311-4994 ; 0000-0003-1815-2793 ; 0009-0003-7364-4640 ; 0009-0008-6112-2841 ; 0009-0007-5547-3728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sha, Letian</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xiao, Fu</creatorcontrib><creatorcontrib>Wang, Zhong</creatorcontrib><creatorcontrib>Long, Zhangbo</creatorcontrib><creatorcontrib>Fan, Qianyu</creatorcontrib><creatorcontrib>Dong, Jiankuo</creatorcontrib><title>VRVul-Discovery: BiLSTM-based Vulnerability Discovery for Virtual Reality Devices in Metaverse</title><title>ACM transactions on multimedia computing communications and applications</title><addtitle>ACM TOMM</addtitle><description>The rapid development of the metaverse has brought about numerous security challenges. Virtual Reality (VR), as one of the core technologies, plays a crucial role in the metaverse. The security of VR devices directly impacts user authentication and privacy. Currently, no attention has been paid to the vulnerabilities and security risks of VR devices. This paper employs a bi-layer BiLSTM neural network to conduct a root cause analysis for user authentication and scene interaction when users enter metaverse environment using VR devices. By establishing the mapping between vulnerable VR firmware file attributes and metaverse interaction scenarios, we implement a vulnerability discovery and verification prototype called VRVul-Discovery, based on the concept of vulnerability discovery. Experiment results demonstrate that VRVul-Discovery provides high-accuracy determinations of firmware vulnerability attributes and scenarios susceptible to hijacking. In the end, the prototype system discovers seven unknown vulnerabilities, all of which are authenticated.</description><issn>1551-6857</issn><issn>1551-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt495Sbp2iSzSStN62fsEWoS48uSZxAZNtKsi3sv3eldU8z8DzvMLyEXAp-I4SC20Ibo_n0iIwEgGB6ouF42MGckrOcvzkvNCg9Ip_LxXLbsMeY_WaHqbujD7H8qObM2YxftGdrTNbFJrYdHSwaNokuY2q3tqELtHuKu-gx07imc2xt72U8JyfBNhkvDnNMquenavbKyveXt9l9ySyIKZPAJU7AOQEYPBgrlVOOCx-mznKU0ugCg1Shf5t75bQFKZSRxkAo-nAxJtf7sz5tck4Y6p8UVzZ1teD1Xyv1oZXevNqb1q8G6R_-AimvXAU</recordid><startdate>20250228</startdate><enddate>20250228</enddate><creator>Sha, Letian</creator><creator>Chen, Xiao</creator><creator>Xiao, Fu</creator><creator>Wang, Zhong</creator><creator>Long, Zhangbo</creator><creator>Fan, Qianyu</creator><creator>Dong, Jiankuo</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-7355-1040</orcidid><orcidid>https://orcid.org/0000-0003-1693-3000</orcidid><orcidid>https://orcid.org/0009-0008-1311-4994</orcidid><orcidid>https://orcid.org/0000-0003-1815-2793</orcidid><orcidid>https://orcid.org/0009-0003-7364-4640</orcidid><orcidid>https://orcid.org/0009-0008-6112-2841</orcidid><orcidid>https://orcid.org/0009-0007-5547-3728</orcidid></search><sort><creationdate>20250228</creationdate><title>VRVul-Discovery: BiLSTM-based Vulnerability Discovery for Virtual Reality Devices in Metaverse</title><author>Sha, Letian ; Chen, Xiao ; Xiao, Fu ; Wang, Zhong ; Long, Zhangbo ; Fan, Qianyu ; Dong, Jiankuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a519-2502e85bb15efc57a24b4b01cf9ba0e22763ef24f0030c4b6a521472775f32503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Letian</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xiao, Fu</creatorcontrib><creatorcontrib>Wang, Zhong</creatorcontrib><creatorcontrib>Long, Zhangbo</creatorcontrib><creatorcontrib>Fan, Qianyu</creatorcontrib><creatorcontrib>Dong, Jiankuo</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on multimedia computing communications and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Letian</au><au>Chen, Xiao</au><au>Xiao, Fu</au><au>Wang, Zhong</au><au>Long, Zhangbo</au><au>Fan, Qianyu</au><au>Dong, Jiankuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VRVul-Discovery: BiLSTM-based Vulnerability Discovery for Virtual Reality Devices in Metaverse</atitle><jtitle>ACM transactions on multimedia computing communications and applications</jtitle><stitle>ACM TOMM</stitle><date>2025-02-28</date><risdate>2025</risdate><volume>21</volume><issue>2</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1551-6857</issn><eissn>1551-6865</eissn><abstract>The rapid development of the metaverse has brought about numerous security challenges. Virtual Reality (VR), as one of the core technologies, plays a crucial role in the metaverse. The security of VR devices directly impacts user authentication and privacy. Currently, no attention has been paid to the vulnerabilities and security risks of VR devices. This paper employs a bi-layer BiLSTM neural network to conduct a root cause analysis for user authentication and scene interaction when users enter metaverse environment using VR devices. By establishing the mapping between vulnerable VR firmware file attributes and metaverse interaction scenarios, we implement a vulnerability discovery and verification prototype called VRVul-Discovery, based on the concept of vulnerability discovery. Experiment results demonstrate that VRVul-Discovery provides high-accuracy determinations of firmware vulnerability attributes and scenarios susceptible to hijacking. In the end, the prototype system discovers seven unknown vulnerabilities, all of which are authenticated.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3677609</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0006-7355-1040</orcidid><orcidid>https://orcid.org/0000-0003-1693-3000</orcidid><orcidid>https://orcid.org/0009-0008-1311-4994</orcidid><orcidid>https://orcid.org/0000-0003-1815-2793</orcidid><orcidid>https://orcid.org/0009-0003-7364-4640</orcidid><orcidid>https://orcid.org/0009-0008-6112-2841</orcidid><orcidid>https://orcid.org/0009-0007-5547-3728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1551-6857
ispartof ACM transactions on multimedia computing communications and applications, 2025-02, Vol.21 (2), p.1-19
issn 1551-6857
1551-6865
language eng
recordid cdi_crossref_primary_10_1145_3677609
source ACM Digital Library Complete
title VRVul-Discovery: BiLSTM-based Vulnerability Discovery for Virtual Reality Devices in Metaverse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VRVul-Discovery:%20BiLSTM-based%20Vulnerability%20Discovery%20for%20Virtual%20Reality%20Devices%20in%20Metaverse&rft.jtitle=ACM%20transactions%20on%20multimedia%20computing%20communications%20and%20applications&rft.au=Sha,%20Letian&rft.date=2025-02-28&rft.volume=21&rft.issue=2&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1551-6857&rft.eissn=1551-6865&rft_id=info:doi/10.1145/3677609&rft_dat=%3Cacm_cross%3E3677609%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true