CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs

The problem of automatically proving the equality of terms over recursive functions and inductive data types is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous attempts at lemma discovery compromise on either efficiency or efficacy. Goal-directed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2024-08, Vol.8 (ICFP), p.818-844, Article 264
Hauptverfasser: Kurashige, Cole, Ji, Ruyi, Giridharan, Aditya, Barbone, Mark, Noor, Daniel, Itzhaky, Shachar, Jhala, Ranjit, Polikarpova, Nadia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue ICFP
container_start_page 818
container_title Proceedings of ACM on programming languages
container_volume 8
creator Kurashige, Cole
Ji, Ruyi
Giridharan, Aditya
Barbone, Mark
Noor, Daniel
Itzhaky, Shachar
Jhala, Ranjit
Polikarpova, Nadia
description The problem of automatically proving the equality of terms over recursive functions and inductive data types is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous attempts at lemma discovery compromise on either efficiency or efficacy. Goal-directed approaches are fast but limited in expressiveness, as they can only discover auxiliary lemmas which entail their goals. Theory exploration approaches are expressive but inefficient, as they exhaustively enumerate candidate lemmas. We introduce e-graph guided lemma discovery, a new approach to finding equational proofs that makes theory exploration goal-directed. We accomplish this by using e-graphs and equality saturation to efficiently construct and compactly represent the space of all goal-oriented proofs. This allows us to explore only those auxiliary lemmas guaranteed to help make progress on some of these proofs. We implemented our method in a new prover called CCLemma and compared it with three state-of-the-art provers across a variety of benchmarks. CCLemma performs consistently well on two standard benchmarks and additionally solves 50% more problems than the next best tool on a new challenging set.
doi_str_mv 10.1145/3674653
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3674653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3674653</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-55bc0eb1c0e2bf4b806a035b71eeefe9837c385e5d7aa46d7bfa276ac90347d93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNTi3dPePEV3s1-JN4kxFgJ60HOY_cJI0627SaH_3mqreJkZ3vdhDg9Cl5TcUMrFLZOKS8FO0CznSmSU5_T0332OFil9EEJoyXjByhlqqqp1wwB3uM6aCJt33Ey9dRb_pPihTyZsXdxhHyJeru1kxn7rcP05wdiHNazwSwzBpwt05mGV3OK45-jtsX6tnrL2uVlW920GVJZjJoQ2xGm6H7n2XBdEAmFCK-qc864smDKsEE5YBcClVdpDriSYkjCubMnm6Prw18SQUnS-28R-gLjrKOm-FXRHBXvy6kCCGf6g3_ILpWlVNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs</title><source>ACM Digital Library Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kurashige, Cole ; Ji, Ruyi ; Giridharan, Aditya ; Barbone, Mark ; Noor, Daniel ; Itzhaky, Shachar ; Jhala, Ranjit ; Polikarpova, Nadia</creator><creatorcontrib>Kurashige, Cole ; Ji, Ruyi ; Giridharan, Aditya ; Barbone, Mark ; Noor, Daniel ; Itzhaky, Shachar ; Jhala, Ranjit ; Polikarpova, Nadia</creatorcontrib><description>The problem of automatically proving the equality of terms over recursive functions and inductive data types is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous attempts at lemma discovery compromise on either efficiency or efficacy. Goal-directed approaches are fast but limited in expressiveness, as they can only discover auxiliary lemmas which entail their goals. Theory exploration approaches are expressive but inefficient, as they exhaustively enumerate candidate lemmas. We introduce e-graph guided lemma discovery, a new approach to finding equational proofs that makes theory exploration goal-directed. We accomplish this by using e-graphs and equality saturation to efficiently construct and compactly represent the space of all goal-oriented proofs. This allows us to explore only those auxiliary lemmas guaranteed to help make progress on some of these proofs. We implemented our method in a new prover called CCLemma and compared it with three state-of-the-art provers across a variety of benchmarks. CCLemma performs consistently well on two standard benchmarks and additionally solves 50% more problems than the next best tool on a new challenging set.</description><identifier>ISSN: 2475-1421</identifier><identifier>EISSN: 2475-1421</identifier><identifier>DOI: 10.1145/3674653</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Automated reasoning ; Equational logic and rewriting ; Theory of computation</subject><ispartof>Proceedings of ACM on programming languages, 2024-08, Vol.8 (ICFP), p.818-844, Article 264</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-55bc0eb1c0e2bf4b806a035b71eeefe9837c385e5d7aa46d7bfa276ac90347d93</cites><orcidid>0009-0003-7212-0714 ; 0000-0002-7276-7644 ; 0009-0003-6699-0430 ; 0009-0008-7504-2009 ; 0000-0002-0150-8629 ; 0000-0001-5571-173X ; 0000-0002-1802-9421 ; 0009-0006-8249-7699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3674653$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Kurashige, Cole</creatorcontrib><creatorcontrib>Ji, Ruyi</creatorcontrib><creatorcontrib>Giridharan, Aditya</creatorcontrib><creatorcontrib>Barbone, Mark</creatorcontrib><creatorcontrib>Noor, Daniel</creatorcontrib><creatorcontrib>Itzhaky, Shachar</creatorcontrib><creatorcontrib>Jhala, Ranjit</creatorcontrib><creatorcontrib>Polikarpova, Nadia</creatorcontrib><title>CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs</title><title>Proceedings of ACM on programming languages</title><addtitle>ACM PACMPL</addtitle><description>The problem of automatically proving the equality of terms over recursive functions and inductive data types is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous attempts at lemma discovery compromise on either efficiency or efficacy. Goal-directed approaches are fast but limited in expressiveness, as they can only discover auxiliary lemmas which entail their goals. Theory exploration approaches are expressive but inefficient, as they exhaustively enumerate candidate lemmas. We introduce e-graph guided lemma discovery, a new approach to finding equational proofs that makes theory exploration goal-directed. We accomplish this by using e-graphs and equality saturation to efficiently construct and compactly represent the space of all goal-oriented proofs. This allows us to explore only those auxiliary lemmas guaranteed to help make progress on some of these proofs. We implemented our method in a new prover called CCLemma and compared it with three state-of-the-art provers across a variety of benchmarks. CCLemma performs consistently well on two standard benchmarks and additionally solves 50% more problems than the next best tool on a new challenging set.</description><subject>Automated reasoning</subject><subject>Equational logic and rewriting</subject><subject>Theory of computation</subject><issn>2475-1421</issn><issn>2475-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsNTi3dPePEV3s1-JN4kxFgJ60HOY_cJI0627SaH_3mqreJkZ3vdhDg9Cl5TcUMrFLZOKS8FO0CznSmSU5_T0332OFil9EEJoyXjByhlqqqp1wwB3uM6aCJt33Ey9dRb_pPihTyZsXdxhHyJeru1kxn7rcP05wdiHNazwSwzBpwt05mGV3OK45-jtsX6tnrL2uVlW920GVJZjJoQ2xGm6H7n2XBdEAmFCK-qc864smDKsEE5YBcClVdpDriSYkjCubMnm6Prw18SQUnS-28R-gLjrKOm-FXRHBXvy6kCCGf6g3_ILpWlVNQ</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Kurashige, Cole</creator><creator>Ji, Ruyi</creator><creator>Giridharan, Aditya</creator><creator>Barbone, Mark</creator><creator>Noor, Daniel</creator><creator>Itzhaky, Shachar</creator><creator>Jhala, Ranjit</creator><creator>Polikarpova, Nadia</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-7212-0714</orcidid><orcidid>https://orcid.org/0000-0002-7276-7644</orcidid><orcidid>https://orcid.org/0009-0003-6699-0430</orcidid><orcidid>https://orcid.org/0009-0008-7504-2009</orcidid><orcidid>https://orcid.org/0000-0002-0150-8629</orcidid><orcidid>https://orcid.org/0000-0001-5571-173X</orcidid><orcidid>https://orcid.org/0000-0002-1802-9421</orcidid><orcidid>https://orcid.org/0009-0006-8249-7699</orcidid></search><sort><creationdate>20240815</creationdate><title>CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs</title><author>Kurashige, Cole ; Ji, Ruyi ; Giridharan, Aditya ; Barbone, Mark ; Noor, Daniel ; Itzhaky, Shachar ; Jhala, Ranjit ; Polikarpova, Nadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-55bc0eb1c0e2bf4b806a035b71eeefe9837c385e5d7aa46d7bfa276ac90347d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated reasoning</topic><topic>Equational logic and rewriting</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurashige, Cole</creatorcontrib><creatorcontrib>Ji, Ruyi</creatorcontrib><creatorcontrib>Giridharan, Aditya</creatorcontrib><creatorcontrib>Barbone, Mark</creatorcontrib><creatorcontrib>Noor, Daniel</creatorcontrib><creatorcontrib>Itzhaky, Shachar</creatorcontrib><creatorcontrib>Jhala, Ranjit</creatorcontrib><creatorcontrib>Polikarpova, Nadia</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of ACM on programming languages</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurashige, Cole</au><au>Ji, Ruyi</au><au>Giridharan, Aditya</au><au>Barbone, Mark</au><au>Noor, Daniel</au><au>Itzhaky, Shachar</au><au>Jhala, Ranjit</au><au>Polikarpova, Nadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs</atitle><jtitle>Proceedings of ACM on programming languages</jtitle><stitle>ACM PACMPL</stitle><date>2024-08-15</date><risdate>2024</risdate><volume>8</volume><issue>ICFP</issue><spage>818</spage><epage>844</epage><pages>818-844</pages><artnum>264</artnum><issn>2475-1421</issn><eissn>2475-1421</eissn><abstract>The problem of automatically proving the equality of terms over recursive functions and inductive data types is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous attempts at lemma discovery compromise on either efficiency or efficacy. Goal-directed approaches are fast but limited in expressiveness, as they can only discover auxiliary lemmas which entail their goals. Theory exploration approaches are expressive but inefficient, as they exhaustively enumerate candidate lemmas. We introduce e-graph guided lemma discovery, a new approach to finding equational proofs that makes theory exploration goal-directed. We accomplish this by using e-graphs and equality saturation to efficiently construct and compactly represent the space of all goal-oriented proofs. This allows us to explore only those auxiliary lemmas guaranteed to help make progress on some of these proofs. We implemented our method in a new prover called CCLemma and compared it with three state-of-the-art provers across a variety of benchmarks. CCLemma performs consistently well on two standard benchmarks and additionally solves 50% more problems than the next best tool on a new challenging set.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3674653</doi><tpages>27</tpages><orcidid>https://orcid.org/0009-0003-7212-0714</orcidid><orcidid>https://orcid.org/0000-0002-7276-7644</orcidid><orcidid>https://orcid.org/0009-0003-6699-0430</orcidid><orcidid>https://orcid.org/0009-0008-7504-2009</orcidid><orcidid>https://orcid.org/0000-0002-0150-8629</orcidid><orcidid>https://orcid.org/0000-0001-5571-173X</orcidid><orcidid>https://orcid.org/0000-0002-1802-9421</orcidid><orcidid>https://orcid.org/0009-0006-8249-7699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-1421
ispartof Proceedings of ACM on programming languages, 2024-08, Vol.8 (ICFP), p.818-844, Article 264
issn 2475-1421
2475-1421
language eng
recordid cdi_crossref_primary_10_1145_3674653
source ACM Digital Library Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automated reasoning
Equational logic and rewriting
Theory of computation
title CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CCLemma:%20E-Graph%20Guided%20Lemma%20Discovery%20for%20Inductive%20Equational%20Proofs&rft.jtitle=Proceedings%20of%20ACM%20on%20programming%20languages&rft.au=Kurashige,%20Cole&rft.date=2024-08-15&rft.volume=8&rft.issue=ICFP&rft.spage=818&rft.epage=844&rft.pages=818-844&rft.artnum=264&rft.issn=2475-1421&rft.eissn=2475-1421&rft_id=info:doi/10.1145/3674653&rft_dat=%3Cacm_cross%3E3674653%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true