Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems

Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM SIGAda Ada Letters 2024-06, Vol.43 (2), p.89-93
Hauptverfasser: Medaglini, Alessio, Bartolini, Sandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 2
container_start_page 89
container_title ACM SIGAda Ada Letters
container_volume 43
creator Medaglini, Alessio
Bartolini, Sandro
description Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.
doi_str_mv 10.1145/3672359.3672374
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3672359_3672374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3672374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a594-256bf5e23e34efb0856f5228ef26182d56e50e0efb867ad8aa029b50725648d63</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqWwRmLlH0jrd5xlVSggiorU7iMnuQaXPCrbAfXvSWlhNSPNnKurQeiWkgmlQk65ShmX2eRXU3GGRlTKNMlEqs4HTzKRcCXoJboKYUsIJ4zrEcrfwNvON6YtAa9jX-1xZ_Gq2EIZ8cab8tO17_jbxQ_82tfR7WrAL6Ye-njh6gg-YNfiWR-7tmu6PuB7774OyHofIjThGl1YUwe4OekYbRYPm_lTslw9Ps9ny8TI4TEmVWElMA5cgC2IlspKxjRYpqhmlVQgCZAh0io1lTaGsKyQJB1AoSvFx2h6PFv6LgQPNt951xi_zynJD_Pkp3ny0zwDcXckTNn8l__CHyU2YKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems</title><source>Access via ACM Digital Library</source><creator>Medaglini, Alessio ; Bartolini, Sandro</creator><creatorcontrib>Medaglini, Alessio ; Bartolini, Sandro</creatorcontrib><description>Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.</description><identifier>ISSN: 1094-3641</identifier><identifier>EISSN: 1557-9476</identifier><identifier>DOI: 10.1145/3672359.3672374</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><ispartof>ACM SIGAda Ada Letters, 2024-06, Vol.43 (2), p.89-93</ispartof><rights>Copyright is held by the owner/author(s)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a594-256bf5e23e34efb0856f5228ef26182d56e50e0efb867ad8aa029b50725648d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3672359.3672374$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Medaglini, Alessio</creatorcontrib><creatorcontrib>Bartolini, Sandro</creatorcontrib><title>Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems</title><title>ACM SIGAda Ada Letters</title><addtitle>ACM SIGADA</addtitle><description>Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.</description><issn>1094-3641</issn><issn>1557-9476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EEqWwRmLlH0jrd5xlVSggiorU7iMnuQaXPCrbAfXvSWlhNSPNnKurQeiWkgmlQk65ShmX2eRXU3GGRlTKNMlEqs4HTzKRcCXoJboKYUsIJ4zrEcrfwNvON6YtAa9jX-1xZ_Gq2EIZ8cab8tO17_jbxQ_82tfR7WrAL6Ye-njh6gg-YNfiWR-7tmu6PuB7774OyHofIjThGl1YUwe4OekYbRYPm_lTslw9Ps9ny8TI4TEmVWElMA5cgC2IlspKxjRYpqhmlVQgCZAh0io1lTaGsKyQJB1AoSvFx2h6PFv6LgQPNt951xi_zynJD_Pkp3ny0zwDcXckTNn8l__CHyU2YKY</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Medaglini, Alessio</creator><creator>Bartolini, Sandro</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240607</creationdate><title>Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems</title><author>Medaglini, Alessio ; Bartolini, Sandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a594-256bf5e23e34efb0856f5228ef26182d56e50e0efb867ad8aa029b50725648d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Medaglini, Alessio</creatorcontrib><creatorcontrib>Bartolini, Sandro</creatorcontrib><collection>CrossRef</collection><jtitle>ACM SIGAda Ada Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medaglini, Alessio</au><au>Bartolini, Sandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems</atitle><jtitle>ACM SIGAda Ada Letters</jtitle><stitle>ACM SIGADA</stitle><date>2024-06-07</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><spage>89</spage><epage>93</epage><pages>89-93</pages><issn>1094-3641</issn><eissn>1557-9476</eissn><abstract>Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3672359.3672374</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1094-3641
ispartof ACM SIGAda Ada Letters, 2024-06, Vol.43 (2), p.89-93
issn 1094-3641
1557-9476
language eng
recordid cdi_crossref_primary_10_1145_3672359_3672374
source Access via ACM Digital Library
title Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Study%20of%20Object%20Tracking%20with%20Multiple%20Kalman%20Filters%20in%20Autonomous%20Driving%20Systems&rft.jtitle=ACM%20SIGAda%20Ada%20Letters&rft.au=Medaglini,%20Alessio&rft.date=2024-06-07&rft.volume=43&rft.issue=2&rft.spage=89&rft.epage=93&rft.pages=89-93&rft.issn=1094-3641&rft.eissn=1557-9476&rft_id=info:doi/10.1145/3672359.3672374&rft_dat=%3Cacm_cross%3E3672374%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true