Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy

Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the er...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGMOD record 2024-05, Vol.53 (1), p.65-74
Hauptverfasser: Rosenblatt, Lucas, Herman, Bernease, Holovenko, Anastasia, Lee, Wonkwon, Loftus, Joshua, McKinnie, Elizabeth, Rumezhak, Taras, Stadnik, Andrii, Howe, Bill, Stoyanovich, Julia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 65
container_title SIGMOD record
container_volume 53
creator Rosenblatt, Lucas
Herman, Bernease
Holovenko, Anastasia
Lee, Wonkwon
Loftus, Joshua
McKinnie, Elizabeth
Rumezhak, Taras
Stadnik, Andrii
Howe, Bill
Stoyanovich, Julia
description Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results.
doi_str_mv 10.1145/3665252.3665267
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3665252_3665267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3665267</sourcerecordid><originalsourceid>FETCH-LOGICAL-a129t-f374445eb84f4496ca299b3588802ef524884da5bed845c7a452e65fb14da0293</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoWKfXglf5A92SNElT72R2KkwcQ6_LaZpApF8k3aD_3s5Vr97D-3EuHoTuKVlSysUqkVIwwZa_KtMLFNGMJ7FQibhEEaHydBN1jW5C-CaEKipJhPZ578JgGqfxDrwbxke8N73vqoN2pasnA0PA0OL8CPUBBte1-N0MfurbzuNnZ63xph0c1Hjn3RH0eIuuLNTB3M26QF-b_HP9Gm8_Xt7WT9sYKMuG2CYp51yYUnHLeSY1sCwrE6GUIsxYwbhSvAJRmkpxoVPgghkpbEknl7AsWaDV-a_2XQje2KL3rgE_FpQUJyTFjKSYkUyLh_MCdPNf_gt_ANRJXCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy</title><source>ACM Digital Library Complete</source><creator>Rosenblatt, Lucas ; Herman, Bernease ; Holovenko, Anastasia ; Lee, Wonkwon ; Loftus, Joshua ; McKinnie, Elizabeth ; Rumezhak, Taras ; Stadnik, Andrii ; Howe, Bill ; Stoyanovich, Julia</creator><creatorcontrib>Rosenblatt, Lucas ; Herman, Bernease ; Holovenko, Anastasia ; Lee, Wonkwon ; Loftus, Joshua ; McKinnie, Elizabeth ; Rumezhak, Taras ; Stadnik, Andrii ; Howe, Bill ; Stoyanovich, Julia</creatorcontrib><description>Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results.</description><identifier>ISSN: 0163-5808</identifier><identifier>EISSN: 1943-5835</identifier><identifier>DOI: 10.1145/3665252.3665267</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><ispartof>SIGMOD record, 2024-05, Vol.53 (1), p.65-74</ispartof><rights>Copyright is held by the owner/author(s)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a129t-f374445eb84f4496ca299b3588802ef524884da5bed845c7a452e65fb14da0293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3665252.3665267$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Rosenblatt, Lucas</creatorcontrib><creatorcontrib>Herman, Bernease</creatorcontrib><creatorcontrib>Holovenko, Anastasia</creatorcontrib><creatorcontrib>Lee, Wonkwon</creatorcontrib><creatorcontrib>Loftus, Joshua</creatorcontrib><creatorcontrib>McKinnie, Elizabeth</creatorcontrib><creatorcontrib>Rumezhak, Taras</creatorcontrib><creatorcontrib>Stadnik, Andrii</creatorcontrib><creatorcontrib>Howe, Bill</creatorcontrib><creatorcontrib>Stoyanovich, Julia</creatorcontrib><title>Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy</title><title>SIGMOD record</title><addtitle>ACM SIGMOD</addtitle><description>Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results.</description><issn>0163-5808</issn><issn>1943-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoWKfXglf5A92SNElT72R2KkwcQ6_LaZpApF8k3aD_3s5Vr97D-3EuHoTuKVlSysUqkVIwwZa_KtMLFNGMJ7FQibhEEaHydBN1jW5C-CaEKipJhPZ578JgGqfxDrwbxke8N73vqoN2pasnA0PA0OL8CPUBBte1-N0MfurbzuNnZ63xph0c1Hjn3RH0eIuuLNTB3M26QF-b_HP9Gm8_Xt7WT9sYKMuG2CYp51yYUnHLeSY1sCwrE6GUIsxYwbhSvAJRmkpxoVPgghkpbEknl7AsWaDV-a_2XQje2KL3rgE_FpQUJyTFjKSYkUyLh_MCdPNf_gt_ANRJXCg</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Rosenblatt, Lucas</creator><creator>Herman, Bernease</creator><creator>Holovenko, Anastasia</creator><creator>Lee, Wonkwon</creator><creator>Loftus, Joshua</creator><creator>McKinnie, Elizabeth</creator><creator>Rumezhak, Taras</creator><creator>Stadnik, Andrii</creator><creator>Howe, Bill</creator><creator>Stoyanovich, Julia</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240514</creationdate><title>Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy</title><author>Rosenblatt, Lucas ; Herman, Bernease ; Holovenko, Anastasia ; Lee, Wonkwon ; Loftus, Joshua ; McKinnie, Elizabeth ; Rumezhak, Taras ; Stadnik, Andrii ; Howe, Bill ; Stoyanovich, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a129t-f374445eb84f4496ca299b3588802ef524884da5bed845c7a452e65fb14da0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rosenblatt, Lucas</creatorcontrib><creatorcontrib>Herman, Bernease</creatorcontrib><creatorcontrib>Holovenko, Anastasia</creatorcontrib><creatorcontrib>Lee, Wonkwon</creatorcontrib><creatorcontrib>Loftus, Joshua</creatorcontrib><creatorcontrib>McKinnie, Elizabeth</creatorcontrib><creatorcontrib>Rumezhak, Taras</creatorcontrib><creatorcontrib>Stadnik, Andrii</creatorcontrib><creatorcontrib>Howe, Bill</creatorcontrib><creatorcontrib>Stoyanovich, Julia</creatorcontrib><collection>CrossRef</collection><jtitle>SIGMOD record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenblatt, Lucas</au><au>Herman, Bernease</au><au>Holovenko, Anastasia</au><au>Lee, Wonkwon</au><au>Loftus, Joshua</au><au>McKinnie, Elizabeth</au><au>Rumezhak, Taras</au><au>Stadnik, Andrii</au><au>Howe, Bill</au><au>Stoyanovich, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy</atitle><jtitle>SIGMOD record</jtitle><stitle>ACM SIGMOD</stitle><date>2024-05-14</date><risdate>2024</risdate><volume>53</volume><issue>1</issue><spage>65</spage><epage>74</epage><pages>65-74</pages><issn>0163-5808</issn><eissn>1943-5835</eissn><abstract>Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3665252.3665267</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-5808
ispartof SIGMOD record, 2024-05, Vol.53 (1), p.65-74
issn 0163-5808
1943-5835
language eng
recordid cdi_crossref_primary_10_1145_3665252_3665267
source ACM Digital Library Complete
title Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epistemic%20Parity:%20Reproducibility%20as%20an%20Evaluation%20Metric%20for%20Differential%20Privacy&rft.jtitle=SIGMOD%20record&rft.au=Rosenblatt,%20Lucas&rft.date=2024-05-14&rft.volume=53&rft.issue=1&rft.spage=65&rft.epage=74&rft.pages=65-74&rft.issn=0163-5808&rft.eissn=1943-5835&rft_id=info:doi/10.1145/3665252.3665267&rft_dat=%3Cacm_cross%3E3665267%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true