Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs
Graph processing frameworks suffer performance degradation from under-utilization of available memory bandwidth, because graph traversal often exhibits poor locality. A prior work, ACTS [24], accelerates graph processing with FPGAs and High Bandwidth Memory (HBM). ACTS achieves locality by partition...
Gespeichert in:
Veröffentlicht in: | ACM transactions on reconfigurable technology and systems 2024-09, Vol.17 (3), p.1-29, Article 48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graph processing frameworks suffer performance degradation from under-utilization of available memory bandwidth, because graph traversal often exhibits poor locality. A prior work, ACTS [24], accelerates graph processing with FPGAs and High Bandwidth Memory (HBM). ACTS achieves locality by partitioning vertex-update messages (based on destination vertex IDs) generated online after active edges have been processed. This work introduces Dynamic-ACTS which builds on ideas in ACTS to support dynamic graphs. The key innovation is to use a hash table to find the edges to be updated. Compared to Gunrock, a GPU graph engine, Dynamic-ACTS achieves a geometric mean speedup of 1.5X, with a maximum speedup of 4.6X. Compared to GraphLily, an FPGA-HBM graph engine, Dynamic-ACTS achieves a geometric speedup of 3.6X, with a maximum speedup of 16.5X. Our results also showed a geometric mean power reduction of 50% and a mean reduction of energy-delay product of 88% over Gunrock. Compared to GraSU, an FPGA graph updating engine, Dynamic-ACTS achieves an average speedup of 15X. |
---|---|
ISSN: | 1936-7406 1936-7414 |
DOI: | 10.1145/3662002 |